16,085 research outputs found
Thermal rectifier from deformed carbon nanohorns
We study thermal rectification in single-walled carbon nanohorns (SWNHs) by
using non-equilibrium molecular dynamics (MD) method. It is found that the
horns with the bigger top angles show larger asymmetric heat transport due to
the larger structural gradient distribution. This kind of gradient behavior can
be further adjusted by applying external strain on the SWNHs. After being
carefully elongated along the axial direction, the thermal rectification in the
elongated SWNHs can become more obvious than that in undeformed ones. The
maximum rectification efficiency of SWNHs is much bigger than that of carbon
nanotube intramolecular junctions.Comment: 3 figure
A Mathematical Model for Estimating Biological Damage Caused by Radiation
We propose a mathematical model for estimating biological damage caused by
low-dose irradiation. We understand that the Linear Non Threshold (LNT)
hypothesis is realized only in the case of no recovery effects. In order to
treat the realistic living objects, our model takes into account various types
of recovery as well as proliferation mechanism, which may change the resultant
damage, especially for the case of lower dose rate irradiation. It turns out
that the lower the radiation dose rate, the safer the irradiated system of
living object (which is called symbolically "tissue" hereafter) can have
chances to survive, which can reproduce the so-called dose and dose-rate
effectiveness factor (DDREF).Comment: 22 pages, 6 Figs, accepted in Journal of the Physical Society of
Japa
Study of axial strain induced torsion of single wall carbon nanotubes by 2D continuum anharmonic anisotropic elastic model
Recent molecular dynamic simulations have found chiral single wall carbon
nanotubes (SWNTs) twist during stretching, which is similar to the motion of a
screw. Obviously this phenomenon, as a type of curvature-chirality effect, can
not be explained by usual isotropic elastic theory of SWNT. More interestingly,
with larger axial strains (before buckling), the axial strain induced torsion
(a-SIT) shows asymmetric behaviors for axial tensile and compressing strains,
which suggests anharmonic elasticity of SWNTs plays an important role in real
a-SIT responses. In order to study the a-SIT of chiral SWNTs with actual sizes,
and avoid possible deviations of computer simulation results due to the
finite-size effect, we propose a 2D analytical continuum model which can be
used to describe the the SWNTs of arbitrary chiralities, curvatures, and
lengths, with the concerning of anisotropic and anharmonic elasticity of SWNTs.
This elastic energy of present model comes from the continuum limit of lattice
energy based on Second Generation Reactive Empirical Bond Order potential
(REBO-II), a well-established empirical potential for solid carbons. Our model
has no adjustable parameters, except for those presented in REBO-II, and all
the coefficients in the model can be calculated analytically. Using our method,
we obtain a-SIT responses of chiral SWNTs with arbitrary radius, chiralities
and lengthes. Our results are in reasonable agreement with recent molecular
dynamic simulations. [Liang {\it et. al}, Phys. Rev. Lett, , 165501
(2006).] Our approach can also be used to calculate other curvature-chirality
dependent anharmonic mechanic responses of SWNTs.Comment: 14 pages, 2 figure
Geometrical and electronic structures of the (5, 3) single-walled gold nanotube from first-principles calculations
The geometrical and electronic structures of the 4 {\AA} diameter perfect and
deformed (5, 3) single-walled gold nanotube (SWGT) have been studied based upon
the density-functional theory in the local-density approximation (LDA). The
calculated relaxed geometries show clearly significant deviations from those of
the ideally rolled triangular gold sheet. It is found that the different
strains have different effects on the electronic structures and density of
states of the SWGTs. And the small shear strain can reduce the binding energy
per gold atom of the deformed SWGT, which is consistent with the experimentally
observed result. Finally, we found the finite SWGT can show the
metal-semiconductor transition.Comment: 11 pages, 4 figure
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect
ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into
spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect
ratio. In this work we investigated the energetics and dynamical aspects of
CNBs formed from rolling up CNRs. We have carried out molecular dynamics
simulations using reactive empirical bond-order potentials. Our results show
that similarly to CNSs, CNBs formation is dominated by two major energy
contribution, the increase in the elastic energy due to the bending of the
initial planar configuration (decreasing structural stability) and the
energetic gain due to van der Waals interactions of the overlapping surface of
the rolled layers (increasing structural stability). Beyond a critical diameter
value these scrolled structures can be even more stable (in terms of energy)
than their equivalent planar configurations. In contrast to CNSs that require
energy assisted processes (sonication, chemical reactions, etc.) to be formed,
CNBs can be spontaneously formed from low temperature driven processes. Long
CNBs (length of 30.0 nm) tend to exhibit self-folded racket-like
conformations with formation dynamics very similar to the one observed for long
carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled
structures. Possible synthetic routes to fabricate CNBs from graphene membranes
are also addressed
Raman modes of the deformed single-wall carbon nanotubes
With the empirical bond polarizability model, the nonresonant Raman spectra
of the chiral and achiral single-wall carbon nanotubes (SWCNTs) under uniaxial
and torsional strains have been systematically studied by \textit{ab initio}
method. It is found that both the frequencies and the intensities of the
low-frequency Raman active modes almost do not change in the deformed
nanotubes, while their high-frequency part shifts obviously. Especially, the
high-frequency part shifts linearly with the uniaxial tensile strain, and two
kinds of different shift slopes are found for any kind of SWCNTs. More
interestingly, new Raman peaks are found in the nonresonant Raman spectra under
torsional strain, which are explained by a) the symmetry breaking and b) the
effect of bond rotation and the anisotropy of the polarizability induced by
bond stretching
Thermomechanical properties of graphene: valence force field model approach
Using the valence force field model of Perebeinos and Tersoff [Phys. Rev. B
{\bf79}, 241409(R) (2009)], different energy modes of suspended graphene
subjected to tensile or compressive strain are studied. By carrying out Monte
Carlo simulations it is found that: i) only for small strains () the total energy is symmetrical in the strain, while it
behaves completely different beyond this threshold; ii) the important energy
contributions in stretching experiments are stretching, angle bending,
out-of-plane term and a term that provides repulsion against
misalignment; iii) in compressing experiments the two latter terms increase
rapidly and beyond the buckling transition stretching and bending energies are
found to be constant; iv) from stretching-compressing simulations we calculated
the Young modulus at room temperature 350\,N/m, which is in good
agreement with experimental results (340\,N/m) and with ab-initio
results [322-353]\,N/m; v) molar heat capacity is estimated to be
24.64\,J/molK which is comparable with the Dulong-Petit value,
i.e. 24.94\,J/molK and is almost independent of the strain; vi)
non-linear scaling properties are obtained from height-height correlations at
finite temperature; vii) the used valence force field model results in a
temperature independent bending modulus for graphene, and viii) the Gruneisen
parameter is estimated to be 0.64.Comment: 8 pages, 5 figures. To appear in J. Phys.: Condens. Matte
Bandgap Change of Carbon Nanotubes: Effect of Small Tensile and Torsional Strain
We use a simple picture based on the electron approximation to study
the bandgap variation of carbon nanotubes with uniaxial and torsional strain.
We find (i) that the magnitude of slope of bandgap versus strain has an almost
universal behaviour that depends on the chiral angle, (ii) that the sign of
slope depends on the value of and (iii) a novel change in sign
of the slope of bandgap versus uniaxial strain arising from a change in the
value of the quantum number corresponding to the minimum bandgap. Four orbital
calculations are also presented to show that the orbital results are
valid.Comment: Revised. Method explained in detai
- …
