2 research outputs found

    Generation of potentially inhibitory autoantibodies to ADAMTS13 in coronavirus disease 2019

    No full text
    It has recently been shown that von Willebrand factor (VWF) multimers contribute to immunothrombosis in Coronavirus disease 2019 (COVID-19). Since COVID-19 is associated with an increased risk of autoreactivity, the present study investigates, whether the generation of autoantibodies to ADAMTS13 contributes to this finding. In this observational prospective controlled multicenter study blood samples and clinical data of patients hospitalized for COVID-19 were collected from April to November 2020. The study included 156 individuals with 90 patients having confirmed COVID-19 of mild to critical severity. 30 healthy individuals and 36 critically ill ICU patients without COVID-19 served as controls. ADAMTS13 antibodies occurred in 31 (34.4%) COVID-19 patients. Antibodies occurred more often in critically ill COVID-19 patients (55.9%) than non-COVID-19 ICU patients and healthy controls (5.6% and 6.7%; p < 0.001), respectively. Generation of ADAMTS13 antibodies in COVID-19 was associated with lower ADAMTS13 activity (56.5%, interquartile range (IQR) 21.25 vs. 71.5%, IQR 24.25, p = 0.0041), increased disease severity (severe or critical in 90% vs. 62.3%, p = 0.019), and a trend to higher mortality (35.5% vs. 18.6%, p = 0.077). Median time to antibody development was 11 days after first positive SARS-CoV-2-PCR specimen. Gel analysis of VWF multimers resembled the constellation in patients with TTP. The present study demonstrates for the first time, that generation of ADAMTS13 antibodies is frequent in COVID-19, associated with lower ADAMTS13 activity and increased risk of an adverse disease course. These findings provide a rationale to include ADAMTS13 antibodies in the diagnostic workup of SARS-CoV-2 infections

    The distinctive activation of toll-like receptor 4 in human samples with sepsis

    No full text
    Clinical success of Toll-Like receptor-4 (TLR-4) antagonists in sepsis therapy has thus far been lacking. As inhibition of a receptor can only be useful if the receptor is active, stratification of patients with active TLR-4 would be desirable. Our aim was to establish an assay to quantify phosphorylated TLR-4 using the proximity ligation assay (PLA). HEK293 TLR4/MD2/CD14 as well as THP-1 cells were stimulated with LPS and the activation of TLR-4 was measured using the PLA. Furthermore, peripheral blood mononuclear cells (PBMCs) from 25 sepsis patients were used to show the feasibility of this assay in clinical material. Activation of TLR-4 in these samples was compared to the PBMCs of 11 healthy individuals. We could show a transient activation of TLR-4 in both cell lines. Five min after the LPS stimulation, the signal increased 6.7-fold in the HEK293 cells and 4.3-fold in the THP-1 cells. The assay also worked well in the PBMCs of septic patients. Phosphorylation of TLR-4 at study inclusion was 2.9 times higher in septic patients compared to healthy volunteers. To conclude, we established a diagnostic assay that is able to quantify the phosphorylation of TLR-4 in cell culture and in clinical samples of sepsis patients. This makes large-scale stratification of sepsis patients for their TLR-4 activation status possible
    corecore