23 research outputs found
Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization.
The RNA-binding protein hnRNP A1 is a splicing regulator produced by exclusion of alternative exon 7B from the A1 pre-mRNA. Each intron flanking exon 7B contains a high-affinity A1-binding site. The A1-binding elements promote exon skipping in vivo, activate distal 5' splice site selection in vitro and improve the responsiveness of pre-mRNAs to increases in the concentration of A1. Whereas the glycine-rich C-terminal domain of A1 is not required for binding, it is essential to activate the distal 5' splice site. Because A1 complexes can interact simultaneously with two A1-binding sites, we propose that an interaction between bound A1 proteins facilitates the pairing of distant splice sites. Based on the distribution of putative A1-binding sites in various pre-mRNAs, an A1-mediated change in pre-mRNA conformation may help define the borders of mammalian introns. We also identify an intron element which represses the 3' splice site of exon 7B. The activity of this element is mediated by a factor distinct from A1. Our results suggest that exon 7B skipping results from the concerted action of several intron elements that modulate splice site recognition and pairing