5 research outputs found

    A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer

    No full text
    Abstract Background Breast cancer remains a leading cause of cancer death worldwide. There is evidence that immunotherapy may play a role in the eradication of residual disease. Peptide vaccines for immunotherapy are capable of durable immune memory, but vaccines alone have shown sparse clinical activity against breast cancer to date. Toll-like receptor (TLR) agonists and helper peptides are excellent adjuvants for vaccine immunotherapy and they are examined in this human clinical trial. Methods A vaccine consisting of 9 MHC class I-restricted breast cancer-associated peptides (from MAGE-A1, −A3, and -A10, CEA, NY-ESO-1, and HER2 proteins) was combined with a TLR3 agonist, poly-ICLC, along with a helper peptide derived from tetanus toxoid. The vaccine was administered on days 1, 8, 15, 36, 57, 78. CD8+ T cell responses to the vaccine were assessed by both direct and stimulated interferon gamma ELIspot assays. Results Twelve patients with breast cancer were treated: five had estrogen receptor positive disease and five were HER2 amplified. There were no dose-limiting toxicities. Toxicities were limited to Grade 1 and Grade 2 and included mild injection site reactions and flu-like symptoms, which occurred in most patients. The most common toxicities were injection site reaction/induration and fatigue, which were experienced by 100% and 92% of participants, respectively. In the stimulated ELIspot assays, peptide-specific CD8+ T cell responses were detected in 4 of 11 evaluable patients. Two patients had borderline immune responses to the vaccine. The two peptides derived from CEA were immunogenic. No difference in immune response was evident between patients receiving endocrine therapy and those not receiving endocrine therapy during the vaccine series. Conclusions Peptide vaccine administered in the adjuvant breast cancer setting was safe and feasible. The TLR3 adjuvant, poly-ICLC, plus helper peptide mixture provided modest immune stimulation. Further optimization is required for this multi-peptide vaccine/adjuvant combination. Trial registration ClinicalTrials.gov (posted 2/15/2012): NCT01532960. Registered 2/8/2012. https://clinicaltrials.gov/show/NCT0153296

    A phase II study of UCN-01 in combination with irinotecan in patients with metastatic triple negative breast cancer

    Get PDF
    Mutations in TP53 lead to a defective G1 checkpoint and the dependence on checkpoint kinase 1 (Chk1) for G2 or S phase arrest in response to DNA damage. In preclinical studies, Chk1 inhibition resulted in enhanced cytotoxicity of several chemotherapeutic agents. The high frequency of TP53 mutations in triple negative breast cancer (TNBC: negative for estrogen receptor, progesterone receptor, and HER2) make Chk1 an attractive therapeutic target. UCN-01, a non-selective Chk1 inhibitor, combined with irinotecan demonstrated activity in advanced TNBC in our Phase I study. The goal of this trial was to further evaluate this treatment in women with TNBC. Patients with metastatic TNBC previously treated with anthracyclines and taxanes received irinotecan (100–125 mg/m(2) IV days 1, 8, 15, 22) and UCN-01 (70 mg/m(2) IV day 2, 35 mg/m(2) day 23 and subsequent doses) every 42-day cycle. Peripheral blood mononuclear cells (PBMC) and tumor specimens were collected. Twenty five patients were enrolled. The overall response (complete response (CR) + partial response (PR)) rate was 4 %. The clinical benefit rate (CR + PR + stable disease ≥6 months) was 12 %. Since UCN-01 inhibits PDK1, phosphorylated ribosomal protein S6 (pS6) in PBMC was assessed. Although reduced 24 h post UCN-01, pS6 levels rose to baseline by day 8, indicating loss of UCN-01 bioavailability. Immunostains of γH2AX and pChk1(S296) on serial tumor biopsies from four patients demonstrated an induction of DNA damage and Chk1 activation following irinotecan. However, Chk1 inhibition by UCN-01 was not observed in all tumors. Most tumors were basal-like (69 %), and carried mutations in TP53 (53 %). Median overall survival in patients with TP53 mutant tumors was poor compared to wild type (5.5 vs. 20.3 months, p = 0.004). This regimen had limited activity in TNBC. Inconsistent Chk1 inhibition was likely due to the pharmacokinetics of UCN-01. TP53 mutations were associated with a poor prognosis in metastatic TNBC
    corecore