116 research outputs found
Live for Now: Teens, Soda Marketing, and the Law
The alarming rate of overweight and obesity in U.S. children, adolescents, and adults has focused attention on the marketing of unhealthy foods and beverages.\u27 Adolescents are heavily targeted in marketing for beverages, including sugary drinks like soda. They have higher rates of overweight and obesity than children less than five years of age, and are on a path to have a shorter life expectancy than their parents. This article analyzes soda marketing through the lens of teen biological and psychological development, marketing tactics commonly used with teen audiences, and consumer protection law principles
Price Discovery and the Accuracy of Consolidated Data Feeds in the U.S. Equity Markets
Both the scientific community and the popular press have paid much attention
to the speed of the Securities Information Processor, the data feed
consolidating all trades and quotes across the US stock market. Rather than the
speed of the Securities Information Processor, or SIP, we focus here on its
accuracy. Relying on Trade and Quote data, we provide various measures of SIP
latency relative to high-speed data feeds between exchanges, known as direct
feeds. We use first differences to highlight not only the divergence between
the direct feeds and the SIP, but also the fundamental inaccuracy of the SIP.
We find that as many as 60 percent or more of trades are reported out of
sequence for stocks with high trade volume, therefore skewing simple measures
such as returns. While not yet definitive, this analysis supports our
preliminary conclusion that the underlying infrastructure of the SIP is
currently unable to keep pace with the trading activity in today's stock
market.Comment: 18 pages, 20 figures, 2 table
Demonstration of Turnstiles as a Chaotic Ionization Mechanism in Rydberg Atoms
We present an experimental and theoretical study of the chaotic ionization of
quasi-one-dimensional potassium Rydberg wavepackets via a phase-space turnstile
mechanism. Turnstiles form a general transport mechanism for numerous chaotic
systems, and this study explicitly illuminates their relevance to atomic
ionization. We create time-dependent Rydberg wavepackets, subject them to
alternating applied electric-field "kicks", and measure the electron survival
probability. Ionization depends not only on the initial electron energy, but
also on the phase-space position of the electron with respect to the turnstile
--- that part of the electron packet inside the turnstile ionizes after the
applied ionization sequence, while that part outside the turnstile does not.
The survival data thus encode information on the geometry and location of the
turnstile, and are in good agreement with theoretical predictions.Comment: 4 pages, 6 figures, preprin
Aging syndrome genes and premature coronary artery disease
BACKGROUND: Vascular disease is a feature of aging, and coronary vascular events are a major source of morbidity and mortality in rare premature aging syndromes. One such syndrome is caused by mutations in the lamin A/C (LMNA) gene, which also has been implicated in familial insulin resistance. A second gene related to premature aging in man and in murine models is the KLOTHO gene, a hypomorphic variant of which (KL-VS) is significantly more common in the first-degree relatives of patients with premature coronary artery disease (CAD). We evaluated whether common variants at the LMNA or KLOTHO genes are associated with rigorously defined premature CAD. METHODS: We identified 295 patients presenting with premature acute coronary syndromes confirmed by angiography. A control group of 145 patients with no evidence of CAD was recruited from outpatient referral clinics. Comprehensive haplotyping of the entire LMNA gene, including the promoter and untranslated regions, was performed using a combination of TaqMan(® )probes and direct sequencing of 14 haplotype-tagging single nucleotide polymorphisms (SNPs). The KL-VS variant of the KLOTHO gene was typed using restriction digest of a PCR amplicon. RESULTS: Two SNPs that were not in Hardy Weinberg equilibrium were excluded from analysis. We observed no significant differences in allele, genotype or haplotype frequencies at the LMNA or KLOTHO loci between the two groups. In addition, there was no evidence of excess homozygosity at the LMNA locus. CONCLUSION: Our data do not support the hypothesis that premature CAD is associated with common variants in the progeroid syndrome genes LMNA and KLOTHO
Carotid intima-medial thickness measured on multiple ultrasound frames: evaluation of a DICOM-based software system
United Kingdo
Seroprevalence following the second wave of pandemic 2009 H1N1 influenza in Pittsburgh, PA, USA
Background: In April 2009, a new pandemic strain of influenza infected thousands of persons in Mexico and the United States and spread rapidly worldwide. During the ensuing summer months, cases ebbed in the Northern Hemisphere while the Southern Hemisphere experienced a typical influenza season dominated by the novel strain. In the fall, a second wave of pandemic H1N1 swept through the United States, peaking in most parts of the country by mid October and returning to baseline levels by early December. The objective was to determine the seroprevalence of antibodies against the pandemic 2009 H1N1 influenza strain by decade of birth among Pittsburgh-area residents. Methods and Findings: Anonymous blood samples were obtained from clinical laboratories and categorized by decade of birth from 1920-2009. Using hemagglutination-inhibition assays, approximately 100 samples per decade (n = 846) were tested from blood samples drawn on hospital and clinic patients in mid-November and early December 2009. Age specific seroprevalences against pandemic H1N1 (A/California/7/2009) were measured and compared to seroprevalences against H1N1 strains that had previously circulated in the population in 2007, 1957, and 1918. (A/Brisbane/59/2007, A/Denver/1/ 1957, and A/South Carolina/1/1918). Stored serum samples from healthy, young adults from 2008 were used as a control group (n = 100). Seroprevalences against pandemic 2009 H1N1 influenza varied by age group, with children age 10-19 years having the highest seroprevalence (45%), and persons age 70-79 years having the lowest (5%). The baseline seroprevalence among control samples from 18-24 year-olds was 6%. Overall seroprevalence against pandemic H1N1 across all age groups was approximately 21%. Conclusions: After the peak of the second wave of 2009 H1N1, HAI seroprevalence results suggest that 21% of persons in the Pittsburgh area had become infected and developed immunity. Extrapolating to the entire US population, we estimate that at least 63 million persons became infected in 2009. As was observed among clinical cases, this sero-epidemiological study revealed highest infection rates among school-age children. © 2010 Zimmer et al
The NANOGrav 15-year Data Set: Search for Anisotropy in the Gravitational-Wave Background
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav)
has reported evidence for the presence of an isotropic nanohertz gravitational
wave background (GWB) in its 15 yr dataset. However, if the GWB is produced by
a population of inspiraling supermassive black hole binary (SMBHB) systems,
then the background is predicted to be anisotropic, depending on the
distribution of these systems in the local Universe and the statistical
properties of the SMBHB population. In this work, we search for anisotropy in
the GWB using multiple methods and bases to describe the distribution of the
GWB power on the sky. We do not find significant evidence of anisotropy, and
place a Bayesian upper limit on the level of broadband anisotropy such
that . We also derive conservative estimates on the
anisotropy expected from a random distribution of SMBHB systems using
astrophysical simulations conditioned on the isotropic GWB inferred in the
15-yr dataset, and show that this dataset has sufficient sensitivity to probe a
large fraction of the predicted level of anisotropy. We end by highlighting the
opportunities and challenges in searching for anisotropy in pulsar timing array
data.Comment: 19 pages, 11 figures; submitted to Astrophysical Journal Letters as
part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave
Background. For questions or comments, please email [email protected]
The NANOGrav 15-Year Data Set: Detector Characterization and Noise Budget
Pulsar timing arrays (PTAs) are galactic-scale gravitational wave detectors.
Each individual arm, composed of a millisecond pulsar, a radio telescope, and a
kiloparsecs-long path, differs in its properties but, in aggregate, can be used
to extract low-frequency gravitational wave (GW) signals. We present a noise
and sensitivity analysis to accompany the NANOGrav 15-year data release and
associated papers, along with an in-depth introduction to PTA noise models. As
a first step in our analysis, we characterize each individual pulsar data set
with three types of white noise parameters and two red noise parameters. These
parameters, along with the timing model and, particularly, a piecewise-constant
model for the time-variable dispersion measure, determine the sensitivity curve
over the low-frequency GW band we are searching. We tabulate information for
all of the pulsars in this data release and present some representative
sensitivity curves. We then combine the individual pulsar sensitivities using a
signal-to-noise-ratio statistic to calculate the global sensitivity of the PTA
to a stochastic background of GWs, obtaining a minimum noise characteristic
strain of at 5 nHz. A power law-integrated analysis shows
rough agreement with the amplitudes recovered in NANOGrav's 15-year GW
background analysis. While our phenomenological noise model does not model all
known physical effects explicitly, it provides an accurate characterization of
the noise in the data while preserving sensitivity to multiple classes of GW
signals.Comment: 67 pages, 73 figures, 3 tables; published in Astrophysical Journal
Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational
Wave Background. For questions or comments, please email
[email protected]
The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory
We present the results of a Bayesian search for gravitational wave (GW) memory in the NANOGrav 12.5 yr data set. We find no convincing evidence for any gravitational wave memory signals in this data set. We find a Bayes factor of 2.8 in favor of a model that includes a memory signal and common spatially uncorrelated red noise (CURN) compared to a model including only a CURN. However, further investigation shows that a disproportionate amount of support for the memory signal comes from three dubious pulsars. Using a more flexible red-noise model in these pulsars reduces the Bayes factor to 1.3. Having found no compelling evidence, we go on to place upper limits on the strain amplitude of GW memory events as a function of sky location and event epoch. These upper limits are computed using a signal model that assumes the existence of a common, spatially uncorrelated red noise in addition to a GW memory signal. The median strain upper limit as a function of sky position is approximately 3.3 × 10−14. We also find that there are some differences in the upper limits as a function of sky position centered around PSR J0613−0200. This suggests that this pulsar has some excess noise that can be confounded with GW memory. Finally, the upper limits as a function of burst epoch continue to improve at later epochs. This improvement is attributable to the continued growth of the pulsar timing array
The NANOGrav 15-year Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
Evidence for a low-frequency stochastic gravitational wave background has
recently been reported based on analyses of pulsar timing array data. The most
likely source of such a background is a population of supermassive black hole
binaries, the loudest of which may be individually detected in these datasets.
Here we present the search for individual supermassive black hole binaries in
the NANOGrav 15-year dataset. We introduce several new techniques, which
enhance the efficiency and modeling accuracy of the analysis. The search
uncovered weak evidence for two candidate signals, one with a
gravitational-wave frequency of 4 nHz, and another at 170 nHz. The
significance of the low-frequency candidate was greatly diminished when
Hellings-Downs correlations were included in the background model. The
high-frequency candidate was discounted due to the lack of a plausible host
galaxy, the unlikely astrophysical prior odds of finding such a source, and
since most of its support comes from a single pulsar with a commensurate binary
period. Finding no compelling evidence for signals from individual binary
systems, we place upper limits on the strain amplitude of gravitational waves
emitted by such systems.Comment: 23 pages, 13 figures, 2 tables. Accepted for publication in
Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set
and the Gravitational Wave Background. For questions or comments, please
email [email protected]
- …