17 research outputs found
Physical controls and ENSO event influence on weathering in the Panama Canal Watershed
Recent empirical studies have documented the importance of tropical mountainous rivers on global silicate weathering and suspended sediment transport. Such field studies are typically based on limited temporal data, leaving uncertainty in the strength of observed relationships with controlling parameters over the long term. A deficiency of long-term data also prevents determination of the impact that multi-year or decadal climate patterns, such as the El Niño Southern Oscillation (ENSO), might have on weathering fluxes. Here we analyze an 18-year hydrochemical dataset for eight sub-basins of the Panama Canal Watershed of high-temporal frequency collected between 1998 and 2015 to address these knowledge gaps. We identified a strongly positive covariance of both cation (Ca2+, Mg2+, K+, Na+) and suspended sediment yields with precipitation and extent of forest cover, whereas we observed negative relationships with temperature and mosaic landcover. We also confirmed a statistical relationship between seasonality, ENSO, and river discharge, with significantly higher values occurring during La Niña events. These findings emphasize the importance that long-term datasets have on identifying short-term influences on chemical and physical weathering rates, especially, in ENSO-influenced regions
TanGeoMS: Tangible Geospatial Modeling System
Abstract—We present TanGeoMS, a tangible geospatial modeling visualization system that couples a laser scanner, projector, and a flexible physical three-dimensional model with a standard geospatial information system (GIS) to create a tangible user interface for terrain data. TanGeoMS projects an image of real-world data onto a physical terrain model. Users can alter the topography of the model by modifying the clay surface or placing additional objects on the surface. The modified model is captured by an overhead laser scanner then imported into a GIS for analysis and simulation of real-world processes. The results are projected back onto the surface of the model providing feedback on the impact of the modifications on terrain parameters and simulated processes. Interaction with a physical model is highly intuitive, allowing users to base initial design decisions on geospatial data, test the impact of these decisions in GIS simulations, and use the feedback to improve their design. We demonstrate the system on three applications: investigating runoff management within a watershed, assessing the impact of storm surge on barrier islands, and exploring landscape rehabilitation in military training areas. Index Terms—Visualization system, geographic/geospatial visualization, terrain visualization, tangible user interface, collaborative visualization, human-computer interaction
Tangible topographic modeling for landscape architects
We present Tangible Landscape—a technology for rapidly and intuitively designing landscapes informed by geospatial modeling, analysis, and simulation. It is a tangible interface powered by a geographic information system that gives three-dimensional spatial data an interactive, physical form so that users can naturally sense and shape it. Tangible Landscape couples a physical and a digital model of a landscape through a real-time cycle of physical manipulation, three-dimensional scanning, spatial computation, and projected feedback. Natural three-dimensional sketching and real-time analytical feedback should aid landscape architects in the design of high performance landscapes that account for physical and ecological processes. We conducted a series of studies to assess the effectiveness of tangible modeling for landscape architects. Landscape architecture students, academics, and professionals were given a series of fundamental landscape design tasks—topographic modeling, cut-and-fill analysis, and water flow modeling. We assessed their performance using qualitative and quantitative methods including interviews, raster statistics, morphometric analyses, and geospatial simulation. With tangible modeling, participants built more accurate models that better represented morphological features than they did with either digital or analog hand modeling. When tangibly modeling, they worked in a rapid, iterative process informed by real-time geospatial analytics and simulations. With the aid of real-time simulations, they were able to quickly understand and then manipulate how complex topography controls the flow of water
Organic carbon concentrations and transport in small mountain rivers, Panama
Tropical small mountainous rivers (SMRs) are increasingly recognized for their role in the global export of dissolved organic carbon (DOC) to the oceans. Here we utilize the Isthmus of Panama as an ideal place to provide first-order estimates of DOC yields across a wide assemblage of bedrock lithologies and land cover practices. Samples for dissolved organic carbon (DOC) analysis were collected across Panama along an E-W transect from the central Panama area to the Costa Rican border for 24 mainstem rivers, 3 large tributary rivers, and one headwater stream. Sampling occurred during both the wet and the dry seasons. DOC concentrations during the wet season are higher than during the dry season in all but three of the rivers. Concentrations vary greatly from river to river and from season to season, with values as low as 0.64 mg l-1 to greater than \u3e25 mg l-1 with the highest concentrations observed for the rivers draining Tertiary marine sedimentary rocks in the Burica and Azuero peninsulas. DOC yields from Panamanian rivers (2.29-7.97 tons/km2/y) are similar to or slightly lower than those determined for other tropical SMR systems. Areas underlain by Tertiary aged sediments exhibited significantly higher mean DOC yields compared to their igneous counterparts, despite maintaining substantially lower aboveground carbon densities, suggesting the important influence of lithology. Finally, regression analyses between DOC yields and select watershed parameters revealed a negative and statistically significant relationship with maximum and mean gradient suggesting lower soil retention times may be linked to lower DOC yields
Evaluation of controls on silicate weathering in tropical mountainous rivers: Insights from the Isthmus of Panama
The Isthmus of Panama comprises a lithologically diverse andesitic oceanic arc of Late Cretaceous to Holocene age; it has large spatial variation in rainfall, displays a large range of physical erosion rates, and, therefore, is an ideal location to examine silicate weathering in the tropics. We use a multiyear data set of river chemistry for a 450 km transect across the Cordillera Central of west-central Panama to investigate controls on chemical weathering in tropical small mountainous rivers. Sea-salt corrected cation weathering yields (Casil + Mgsil + Na + K) range over more than an order in magnitude from 3.1 to 31.7 t/km2/yr, while silicate weathering yields (Casil + Mgsil + Na + K + Si) range from 6.9 to 69.5 t/km2/yr. Watershed lithology is the primary control on riverine chemistry, but landscape topographic character and land cover and/or land use also influence solute delivery potential. Strong statistical links of small mountainous river chemical weathering fluxes with rainfall and physical weathering rates attest to the importance of runoff and erosion in maintaining elevated bedrock weathering rates. CO2 consumption ranges from 155 Ă— 103 mol/km2/yr to 1566 Ă— 103 mol/km2/yr, in the upper range of global rates, leading us to suggest that andesite terrains should be considered separately when calculating removal of CO2 from the atmosphere via silicate weathering
Linking silicate weathering to riverine geochemistry—A case study from a mountainous tropical setting in west-central Panama
Chemical analyses from 71 watersheds across an ~450 km transect in west-central Panama provide insight into controls on weathering and rates of chemical denudation and CO2 consumption across an igneous arc terrain in the tropics. Stream and river compositions across this region of Panama are generally dilute, having a total dissolved
solute value = 118 ± 91 mg/L, with bicarbonate and silica being the predominant dissolved species. Solute, stable isotope, and radiogenic isotope compositions are consistent with dissolution of igneous rocks present in Panama by meteoric precipitation, with geochemical signatures of rivers largely acquired in their upstream regions. Comparison of a headwater basin with its entire watershed
observed considerably more runoff production from the high-elevation upstream portion of the catchment than in its much more spatially extensive downstream region. Rock
alteration profiles document that weathering proceeds primarily by dissolution of feldspar and pyroxene, with base cations effectively leached in the following sequence: Na > Ca > Mg > K. Control on water chemistry by bedrock lithology is indicated through a linking of elevated ([Na + K]/[Ca + Mg]) ratios in waters to a high proportion of catchment area silicic bedrock and low ratios to mafic bedrock. Sr‑isotope ratios are dominated by basementderived
Sr, with only very minor, if any, contribution from other sources. Cation weathering of Ca(sil) + Mg(sil) + Na + K spans about an order in magnitude, from 3 to 32 tons/km2/yr.
Strong positive correlations of chemical denudation and CO2 consumption are observed with precipitation, mean watershed elevation, extent of land surface forest cover, and physical
erosion rate