19 research outputs found

    Contribution of organic anion-transporting polypeptides 1a/1b to doxorubicin uptake and clearance

    Get PDF
    The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b-/- versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2-/- mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter mediated uptake and disposition of doxorubicin

    Interaction of three regiospecific amino acid residues is required for OATP1B1 gain of OATP1B3 substrate specificity

    Get PDF
    The human organic anion-transporting polypeptides OATP1B1 (SLCO1B1) and OATP1B3 (SLCO1B3) are liver-enriched membrane transporters of major importance to hepatic uptake of numerous endogenous compounds, including bile acids, steroid conjugates, hormones, and drugs, including the 3-hydroxy-3- methylglutaryl Co-A reductase inhibitor (statin) family of cholesterol-lowering compounds. Despite their remarkable substrate overlap, there are notable exceptions: in particular, the gastrointestinal peptide hormone cholecystokinin-8 (CCK-8) is a high affinity substrate for OATP1B3 but not OATP1B1. We utilized homologous recombination of linear DNA by E. coli to generate a library of cDNA containing monomer size chimeric OATP1B1-1B3 and OATP1B3-1B1 transporters with randomly distributed chimeric junctions to identify three discrete regions of the transporter involved in conferring CCK-8 transport activity. Site-directed mutagenesis of three key residues in OATP1B1 transmembrane helices 1 and 10, and extracellular loop 6, to the corresponding residues in OATP1B3, resulted in a gain of CCK-8 transport by OATP1B1. The residues appear specific to CCK-8, as the mutations did not affect transport of the shared OATP1B substrate atorvastatin or the OATP1B1-specific substrate estrone sulfate. Regions involved in gain of CCK-8 transport by OATP1B1, when mapped to the crystal structures of bacterial transporters from the major facilitator superfamily, are positioned to suggest these regions could readily interact with drug substrates. Accordingly, our data provide new insight into the molecular determinants of the substrate specificity of these hepatic uptake transporters with relevance to targeted drug design and prediction of drug-drug interactions. © 2012 American Chemical Society

    Contribution of hepatic organic anion-transporting polypeptides to docetaxel uptake and clearance

    Get PDF
    The antimicrotubular agent docetaxel is a widely used chemotherapeutic drug for the treatment of multiple solid tumors and is predominantly dependent on hepatic disposition. In this study, we evaluated drug uptake transporters capable of transporting radiolabeled docetaxel. By screening an array of drug uptake transporters in HeLa cells using a recombinant vacciniabased method, five organic anion-transporting polypeptides (OATP) capable of docetaxel uptake were identified: OATP1A2, OATP1B1, OATP1B3, OATP1C1, and Oatp1b2. Kinetic analysis of docetaxel transport revealed similar kinetic parameters among hepatic OATP1B/1b transporters. An assessment of polymorphisms (SNPs) in SLCO1B1 and SLCO1B3 revealed that a number of OATP1B1 and OATP1B3 variants were associated with impaired docetaxel transport. A Transwell-based vectorial transport assay using MDCKII stable cells showed that docetaxel was transported significantly into the apical compartment of double-transfected (MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1) cells compared with singletransfected (MDCKII-OATP1B1 and MDCKII-OATP1B3) cells (P \u3c 0.05) or control (MDCKII-Co) cells (P \u3c 0.001). In vivo docetaxel transport studies in Slco1b2-/- mice showed approximately \u3e5.5-fold higher plasma concentrations (P \u3c 0.01) and approximately 3-fold decreased liver-to-plasma ratio (P \u3c 0.05) of docetaxel compared with wild-type (WT) mice. The plasma clearance of docetaxel in Slco1b2-/- mice was 83% lower than WT mice (P \u3c 0.05). In conclusion, this study demonstrates the important roles of OATP1B transporters to the hepatic disposition and clearance of docetaxel, and supporting roles of these transporters for docetaxel pharmacokinetics

    Polymorphic variants in the human bile salt export pump (BSEP; ABCB11): Functional characterization and interindividual variability

    Get PDF
    OBJECTIVES: Our aims were to identify and functionally characterize coding region nonsynonymous single nucleotide polymorphisms in the hepatic efflux transporter, bile salt export pump (BSEP; ABCB11), and to assess interindividual variability in BSEP expression. METHODS: We identified 24 single nucleotide polymorphisms, including nine nonsynonymous variants, in ABCB11 from genomic DNA of ∼250 ethnically diverse healthy individuals using denaturing high-performance liquid chromatography analysis and DNA sequencing. Wild type and variant BSEP were generated and functionally characterized for taurocholate transport activity in vitro in HeLa cells using a recombinant vaccinia-based method. BSEP expression was assessed by real-time mRNA analysis, western blot analysis, and immunofluorescence confocal microscopy. RESULTS: For the most part, polymorphisms were rare and ethnic-dependent. In vitro functional studies revealed several rare variants, including 616A\u3eG, 1674G\u3eC, 1772A\u3eG, and 3556G\u3eA, to be associated with significantly impaired taurocholate transport activity while the 890A\u3eG variant trended towards impaired function but was not statistically significant. The 3556G\u3eA variant was associated with reduced cell surface to total protein expression compared with wild-type BSEP. Expression of BSEP by mRNA and protein analysis was determined from a bank of human liver samples. Wide interindividual variability was noted in both mRNA (19-fold) and protein (31-fold) expression levels. The common variant 1331T\u3eC was associated with significantly reduced hepatic BSEP mRNA levels. CONCLUSION: Accordingly, our study indicates there are functionally relevant polymorphisms in ABCB11 which may be of potential relevance in the predisposition to acquired liver disorders such as drug-induced cholestasis. © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Human skeletal muscle drug transporters determine local exposure and toxicity of statins

    Get PDF
    Rationale: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. Objective: We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. Methods and Results: We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. Conclusions: These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity. © 2010 American Heart Association, Inc

    Identification and Characterization of Trimethylamine-N-oxide Uptake and Efflux Transporters

    Get PDF
    Trimethylamine-N-oxide (TMAO) is a recently identified predictor of cardiovascular and chronic kidney disease. TMAO is primarily generated through gut-microbiome mediated conversion of dietary choline and carnitine to TMA, which is converted to TMAO by hepatic flavin monooxygenase 3 (FMO3) and subsequently undergoes renal elimination. We investigated the role of uptake and efflux drug transporters in TMAO disposition in vitro and in vivo. After screening a large array of uptake transporters, we show organic cation transporter 2 (OCT2) is the key transporter for TMAO cellular uptake. In Oct1/2 knockout mice, we observed increased plasma TMAO levels with reduced renal retention, suggesting the importance of Oct2 in facilitating the uptake of TMAO into renal tubular cells in vivo. Multiple transporters of the ATP-binding cassette (ABC) family, including ABCG2 (BCRP) and ABCB1 (MDR1), were capable of TMAO efflux. In human subjects, clinical, dietary, and pharmacogenetic covariates were evaluated for contribution to TMAO levels in a cohort of dyslipidemic patients (n = 405). Interestingly, genetic variation in ABCG2, but not other transporters, appeared to play a role in modulating TMAO exposure

    An Allosteric Mechanism for Drug Block of the Human Cardiac Potassium Channel KCNQ1

    No full text

    Interaction of Three Regiospecific Amino Acid Residues Is Required for OATP1B1 Gain of OATP1B3 Substrate Specificity

    No full text
    The human organic anion-transporting polypeptides OATP1B1 (<i>SLCO1B1</i>) and OATP1B3 (<i>SLCO1B3</i>) are liver-enriched membrane transporters of major importance to hepatic uptake of numerous endogenous compounds, including bile acids, steroid conjugates, hormones, and drugs, including the 3-hydroxy-3-methylglutaryl Co-A reductase inhibitor (statin) family of cholesterol-lowering compounds. Despite their remarkable substrate overlap, there are notable exceptions: in particular, the gastrointestinal peptide hormone cholecystokinin-8 (CCK-8) is a high affinity substrate for OATP1B3 but not OATP1B1. We utilized homologous recombination of linear DNA by <i>E. coli</i> to generate a library of cDNA containing monomer size chimeric OATP1B1–1B3 and OATP1B3–1B1 transporters with randomly distributed chimeric junctions to identify three discrete regions of the transporter involved in conferring CCK-8 transport activity. Site-directed mutagenesis of three key residues in OATP1B1 transmembrane helices 1 and 10, and extracellular loop 6, to the corresponding residues in OATP1B3, resulted in a gain of CCK-8 transport by OATP1B1. The residues appear specific to CCK-8, as the mutations did not affect transport of the shared OATP1B substrate atorvastatin or the OATP1B1-specific substrate estrone sulfate. Regions involved in gain of CCK-8 transport by OATP1B1, when mapped to the crystal structures of bacterial transporters from the major facilitator superfamily, are positioned to suggest these regions could readily interact with drug substrates. Accordingly, our data provide new insight into the molecular determinants of the substrate specificity of these hepatic uptake transporters with relevance to targeted drug design and prediction of drug–drug interactions
    corecore