4 research outputs found

    3D-printed micro bubble column reactor with integrated microsensors for biotechnological applications: from design to evaluation

    Get PDF
    With the technological advances in 3D printing technology, which are associated with ever-increasing printing resolution, additive manufacturing is now increasingly being used for rapid manufacturing of complex devices including microsystems development for laboratory applications. Personalized experimental devices or entire bioreactors of high complexity can be manufactured within few hours from start to finish. This study presents a customized 3D-printed micro bubble column reactor (3D-”BCR), which can be used for the cultivation of microorganisms (e.g., Saccharomyces cerevisiae) and allows online-monitoring of process parameters through integrated microsensor technology. The modular 3D-”BCR achieves rapid homogenization in less than 1 s and high oxygen transfer with kLa values up to 788 h-1 and is able to monitor biomass, pH, and DOT in the fluid phase, as well as CO2 and O2 in the gas phase. By extensive comparison of different reactor designs, the influence of the geometry on the resulting hydrodynamics was investigated. In order to quantify local flow patterns in the fluid, a three-dimensional and transient multiphase Computational Fluid Dynamics model was successfully developed and applied. The presented 3D-”BCR shows enormous potential for experimental parallelization and enables a high level of flexibility in reactor design, which can support versatile process development

    3D-printed micro bubble column reactor with integrated microsensors for biotechnological applications: From design to evaluation

    Get PDF
    With the technological advances in 3D printing technology, which are associated with ever-increasing printing resolution, additive manufacturing is now increasingly being used for rapid manufacturing of complex devices including microsystems development for laboratory applications. Personalized experimental devices or entire bioreactors of high complexity can be manufactured within few hours from start to finish. This study presents a customized 3D-printed micro bubble column reactor (3D-”BCR), which can be used for the cultivation of microorganisms (e.g., Saccharomyces cerevisiae) and allows online-monitoring of process parameters through integrated microsensor technology. The modular 3D-”BCR achieves rapid homogenization in less than 1 s and high oxygen transfer with kLa values up to 788 h−1 and is able to monitor biomass, pH, and DOT in the fluid phase, as well as CO2 and O2 in the gas phase. By extensive comparison of different reactor designs, the influence of the geometry on the resulting hydrodynamics was investigated. In order to quantify local flow patterns in the fluid, a three-dimensional and transient multiphase Computational Fluid Dynamics model was successfully developed and applied. The presented 3D-”BCR shows enormous potential for experimental parallelization and enables a high level of flexibility in reactor design, which can support versatile process development. © 2021, The Author(s)

    Continuous Electroformation of Gold Nanoparticles in Nanoliter Droplet Reactors

    No full text
    Gold nanoparticles (AuNPs) are employed in numerous applications, including optics, biosensing and catalysis. Here, we demonstrate the stabilizer-free electrochemical synthesis of AuNPs inside nanoliter-sized reactors. Droplets encapsulating a gold precursor are formed on a microfluidic device and exposed to an electrical current by guiding them through a pair of electrodes. We exploit the naturally occurring recirculation flows inside confined droplets (moving in rectangular microchannels) to prevent the aggregation of nanoparticles after nucleation. Therefore, AuNPs with sizes in the range of 30 to 100 nm were produced without the need of additional capping agents. The average particle size is defined by the precursor concentration and droplet velocity, while the charge dose given by the electric field strength has a minor effect. This method opens the way to fine-tune the electrochemical production of gold nanoparticles, and we believe it is a versatile method for the formation of other metal nanoparticles.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083
    corecore