519 research outputs found

    A new method of quantization of classical solutions

    Get PDF
    Using stochastic quantization method we derive equations for correlators of quantum fluctuations around the classical solution in the massless phi^4 theory. The obtained equations are then solved in the lowest orders of perturbation theory, and the first correction to the free propagator of a quantum fluctuation is calculated.Comment: 8 page

    Distribution of major anions and trace elements in the unsaturated zone at Franklin Lake Playa, California, USA

    Get PDF
    The composition of surficial salts formed near dry and drying saline lakes are partly the product of processes active in the unsaturated zone between the ground surface and the water table. These processes were investigated by determining the abundance of water-extractable solutes in sediment from the ground surface to the water table (~2.8 m) beneath Franklin Lake playa, California. Accumulation of solutes in the sediment is attributed to evaporation of aqueous solutions transported upward from the water table through the capillary fringe to an evaporation font that is currently 20-30 cm below the ground surface. Salts in the sediment from 0 to 20 cm depth are depleted in chloride and enriched in carbonate relative to deeper samples. Chloride depletion is most likely a product of selective dissolution by vertical recharge. The entire unsaturated zone contains greater amounts of carbonate than expected for evaporation of ground water and is best explained by preferential dissolution of more soluble salts in recharging precipitation but may also reflect the assimilation of CO2 as carbonate minerals precipitate. Variations in the concentrations of arsenic, molybdenum, tungsten, and uranium in the water-soluble fraction of the sediment are complex and suggest unique geochemical controls on the abundance of each element. The distribution of these trace element abundances indicates the arsenic is the element most likely to accumulate in near-surface salts

    On the evaluation of some three-body variational integrals

    Get PDF
    Stable recursive relations are presented for the numerical computation of the integrals ∫dr1dr2r1l−1r2m−1r12n−1exp⁥{−αr1−ÎČr2−γr12}\int d{\bf r}_1 d{\bf r}_2 r_1^{l-1} r_2^{m-1} r_{12}^{n-1} \exp{\{-\alpha r_1 -\beta r_2 -\gamma r_{12}\}} (ll, mm and nn integer, α\alpha, ÎČ\beta and Îł\gamma real) when the indices ll, mm or nn are negative. Useful formulas are given for particular values of the parameters α\alpha, ÎČ\beta and Îł\gamma.Comment: 12 pages, 1 figure (PS) and 3 tables. Old figures 2 and 3 replaced by Tables I and III. A further table added. Paper enlarged giving some tips on the convergence of quadrature

    Correlated many-body treatment of Breit interaction with application to cesium atomic properties and parity violation

    Get PDF
    Corrections from Breit interaction to basic properties of atomic 133Cs are determined in the framework of third-order relativistic many-body perturbation theory. The corrections to energies, hyperfine-structure constants, off-diagonal hyperfine 6S-7S amplitude, and electric-dipole matrix elements are tabulated. It is demonstrated that the Breit corrections to correlations are comparable to the Breit corrections at the Dirac-Hartree-Fock level. Modification of the parity-nonconserving (PNC) 6S-7S amplitude due to Breit interaction is also evaluated; the resulting weak charge of 133^{133}Cs shows no significant deviation from the prediction of the standard model of elementary particles. The neutron skin correction to the PNC amplitude is also estimated to be -0.2% with an error bound of 30% based on the analysis of recent experiments with antiprotonic atoms. The present work supplements publication [A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000)] with a discussion of the formalism and provides additional numerical results and updated discussion of parity violation.Comment: 16 pages; 5 figs; submitted to Phys. Rev.

    Role of Present and Future Atomic Parity Violation Experiments in Precision Electroweak Tests

    Get PDF
    Recent reanalyses of the atomic physics effects on the weak charge in cesium have led to a value in much closer agreement with predictions of the Standard Model. We review precision electroweak tests, their implications for upper bounds on the mass of the Higgs boson, possible ways in which these bounds may be circumvented, and the requirements placed upon accuracy of future atomic parity violation experiments by these considerations.Comment: 10 pages, LaTeX, 1 figure, to be submitted to Physical Review D, new data on neutrino deep inelastic scattering include

    Combined STN/SNr-DBS for the treatment of refractory gait disturbances in Parkinson's disease: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe gait disturbances in idiopathic Parkinson's disease (PD) are observed in up to 80% of all patients in advanced disease stages with important impact on quality of life. There is an unmet need for further symptomatic therapeutic strategies, particularly as gait disturbances generally respond unfavourably to dopaminergic medication and conventional deep brain stimulation of the subthalamic nucleus in advanced disease stages. Recent pathophysiological research pointed to nigro-pontine networks entrained to locomotor integration. Stimulation of the pedunculopontine nucleus is currently under investigation, however, hitherto remains controversial. The substantia nigra pars reticulata (SNr) - entrained into integrative locomotor networks - is pathologically overactive in PD. High-frequent stimulation of the substantia nigra pars reticulata preferentially modulated axial symptoms and therefore is suggested as a novel therapeutic candidate target for neuromodulation of refractory gait disturbances in PD.</p> <p>Methods</p> <p>12 patients with idiopathic Parkinson's disease and refractory gait disturbances under best individual subthalamic nucleus stimulation and dopaminergic medication will be enroled into this double-blind 2 × 2 cross-over clinical trial. The treatment consists of two different stimulation settings using <it>(i) </it>conventional stimulation of the subthalamic nucleus [STNmono] and <it>(ii) </it>combined stimulation of distant electrode contacts located in the subthalamic nucleus and caudal border zone of STN and substantia nigra pars reticulata [STN+SNr]. The primary outcome measure is the change of the cumulative 'axial score' (UPDRS II items '13-15' and UPRDS III items '27-31') at three weeks of constant stimulation in either condition. Secondary outcome measures include specific scores on freezing of gait, balance function, quality of life, non-motor symptoms, and neuropsychiatric symptoms. The aim of the present trial is to investigate the efficacy and safety of a three week constant combined stimulation on [STN+SNr] compared to [STNmono]. The results will clarify, whether stimulation on nigral contacts additional to subthalamic stimulation will improve therapeutic response of otherwise refractory gait disturbances in PD.</p> <p>Trial registration</p> <p>The trial was registered with the clinical trials register of <url>http://www.clinicaltrials.gov</url> (<a href="http://www.clinicaltrials.gov/ct2/show/NCT01355835">NCT01355835</a>)</p

    Conductance and density of states as the Kramers-Kronig dispersion relation

    Full text link
    By applying the Kramers-Kronig dispersion relation to the transmission amplitude a direct connection of the conductance with the density of states is given in quantum scattering systems connected to two one-channel leads. Using this method we show that in the Fano resonance the peak position of the density of states is generally different from the position of the corresponding conductance peak, whereas in the Breit-Wigner resonance those peak positions coincide. The lineshapes of the density of states are well described by a Lorentz type in the both resonances. These results are verified by another approach using a specific form of the scattering matrix to describe scattering resonances.Comment: 9 pages, 4 figure

    Dephasing and Measurement Efficiency via a Quantum Dot Detector

    Full text link
    We study charge detection and controlled dephasing of a mesoscopic system via a quantum dot detector (QDD), where the mesoscopic system and the QDD are capacitively coupled. The QDD is considered to have coherent resonant tunnelling via a single level. It is found that the dephasing rate is proportional to the square of the conductance of the QDD for the Breit-Wigner model, showing that the dephasing is completely different from the shot noise of the detector. The measurement rate, on the other hand, shows a dip near the resonance. Our findings are peculiar especially for a symmetric detector in the following aspect: The dephasing rate is maximum at resonance of the QDD where the detector conductance is insensitive to the charge state of the mesoscopic system. As a result, the efficiency of the detector shows a dip and vanishes at resonance, in contrast to the single-channel symmetric non-resonant detector that has always a maximum efficiency. We find that this difference originates from a very general property of the scattering matrix: The abrupt phase change exists in the scattering amplitudes in the presence of the symmetry, which is insensitive to the detector current but {\em stores} the information of the quantum state of the mesoscopic system.Comment: 7 pages, 3 figure

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    Phase fluctuations and the pseudogap in YBa2Cu3Ox

    Full text link
    The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa2Cu3Ox single crystals and Monte-Carlo simulations of the anisotropic 3D-XY model. We directly show that Tc of underdoped YBa2Cu3Ox is strongly suppressed from its mean-field value (Tc-MF) by phase fluctuations of the superconducting order parameter. For overdoped YBa2Cu3Ox fluctuation effects are greatly reduced and Tc ~ Tc-MF . We find that Tc-MF exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.Comment: 9 pages, 3 Figure
    • 

    corecore