49 research outputs found
A morphometric analysis of the infant calvarium and dura
Literature addressing the anatomic development of the dura and calvarium during childhood is limited. Nevertheless, histological features of a subdural neomembrane (NM), including its thickness and vascularity, developing in response to an acute subdural hematoma (SDH) have been compared to the dura of adults to estimate when an injury occurred. Therefore, we measured the morphometric growth of the calvarium and dura and the vascular density within the dura during infancy. The mean thicknesses of the calvarium and dura as a function of occipitofrontal circumference (OFC), as well as the mean number of vessels per 25× field, were determined from the right parasagittal midparietal bone lateral to the sagittal suture of 128 infants without a history of head trauma. Our results showed that as OFC increased, the mean thicknesses of the calvarium and dura increased while the vascular density within the dura decreased. Our morphometric data may assist in the interpretation of subdural NM occurring during infancy. We recommend future investigations to confirm and extend our present data, especially by evaluating cases during later infancy and beyond as well as by sampling other anatomic sites from the calvarium. We also recommend morphometric evaluation of subdural NM associated with SDH in infancy and childhood
Deployment of Water-based Liquid Scintillator in the Accelerator Neutrino Neutron Interaction Experiment
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton
water Cherenkov neutrino detector installed on the Booster Neutrino Beam (BNB)
at Fermilab. Its main physics goals are to perform a measurement of the neutron
yield from neutrino-nucleus interactions, as well as a measurement of the
charged-current cross section of muon neutrinos. An equally important focus is
placed on the research and development of new detector technologies and target
media. Specifically water-based liquid scintillator (WbLS) is of interest as a
novel detector medium, as it allows for the simultaneous detection of
scintillation and Cherenkov light. This paper presents the deployment of a 366L
WbLS vessel in ANNIE in March 2023 and the subsequent detection of both
Cherenkov light and scintillation from the WbLS. This proof-of-concept allows
for the future development of reconstruction and particle identification
algorithms in ANNIE, as well as dedicated analyses, such as the search for
neutral current events and the hadronic scintillation component within the WbLS
volume.Comment: 19 pages, 16 figure
Protocol for measuring myocardial blood flow by PET/CT in cats
PURPOSE: The aim of this study was to establish a protocol for measuring myocardial blood flow (MBF) by PET/CT in healthy cats. The rationale was its future use in Maine Coon cats with hypertrophic cardiomyopathy (HCM) as a model for human HCM. METHODS: MBF was measured in nine anaesthetized healthy cats using a PET/CT scanner and (13)NH(3) at rest and during adenosine infusion. Each cat was randomly assigned to receive vasodilator stress with two or three adenosine infusions at the following rates (mug/kg per minute): 140 (Ado 1, standard rate for humans), 280 (Ado 2, twice the human standard rate), 560 (Ado 4), 840 (Ado 6) and 1,120 (Ado 8). RESULTS: The median MBF at rest was 1.26 ml/min per g (n = 9; range 0.88-1.72 ml/min per g). There was no significant difference at Ado 1 (n = 3; median 1.35, range 0.93-1.55 ml/min per g; ns) but MBF was significantly greater at Ado 2 (n = 6; 2.16, range 1.35-2.68 ml/min per g; p < 0.05) and Ado 4 (n = 6; 2.11, 1.92-2.45 ml/min per g; p < 0.05). Large ranges of MBF values at Ado 6 (n = 4; 2.53, 2.32-5.63 ml/min per g; ns) and Ado 8 (n = 3; 2.21, 1.92-5.70 ml/min per g; ns) were noted. Observed adverse effects, including hypotension, AV-block and ventricular premature contractions, were all mild, of short duration and immediately reversed after cessation of the adenosine infusion. CONCLUSION: MBF can be safely measured in cats using PET. An intravenous adenosine infusion at a rate of 280 mug/kg per minute seems most appropriate to induce maximal hyperaemic MBF response in healthy cats. Higher adenosine rates appear less suitable as they are associated with a large heterogeneity in flow increase and rate pressure product, most probably due to the large variability in haemodynamic and heart rate response
Recommended from our members
A morphometric analysis of the infant calvarium and dura
Literature addressing the anatomic development of the dura and calvarium during childhood is limited. Nevertheless, histological features of a subdural neomembrane (NM), including its thickness and vascularity, developing in response to an acute subdural hematoma (SDH) have been compared to the dura of adults to estimate when an injury occurred. Therefore, we measured the morphometric growth of the calvarium and dura and the vascular density within the dura during infancy. The mean thicknesses of the calvarium and dura as a function of occipitofrontal circumference (OFC), as well as the mean number of vessels per 25× field, were determined from the right parasagittal midparietal bone lateral to the sagittal suture of 128 infants without a history of head trauma. Our results showed that as OFC increased, the mean thicknesses of the calvarium and dura increased while the vascular density within the dura decreased. Our morphometric data may assist in the interpretation of subdural NM occurring during infancy. We recommend future investigations to confirm and extend our present data, especially by evaluating cases during later infancy and beyond as well as by sampling other anatomic sites from the calvarium. We also recommend morphometric evaluation of subdural NM associated with SDH in infancy and childhood