213 research outputs found

    Endogenous post-stratification in surveys: classifying with a sample-fitted model

    Full text link
    Post-stratification is frequently used to improve the precision of survey estimators when categorical auxiliary information is available from sources outside the survey. In natural resource surveys, such information is often obtained from remote sensing data, classified into categories and displayed as pixel-based maps. These maps may be constructed based on classification models fitted to the sample data. Post-stratification of the sample data based on categories derived from the sample data (``endogenous post-stratification'') violates the standard post-stratification assumptions that observations are classified without error into post-strata, and post-stratum population counts are known. Properties of the endogenous post-stratification estimator are derived for the case of a sample-fitted generalized linear model, from which the post-strata are constructed by dividing the range of the model predictions into predetermined intervals. Design consistency of the endogenous post-stratification estimator is established under mild conditions. Under a superpopulation model, consistency and asymptotic normality of the endogenous post-stratification estimator are established, showing that it has the same asymptotic variance as the traditional post-stratified estimator with fixed strata. Simulation experiments demonstrate that the practical effect of first fitting a model to the survey data before post-stratifying is small, even for relatively small sample sizes.Comment: Published in at http://dx.doi.org/10.1214/009053607000000703 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Single-Index Model-Assisted Estimation In Survey Sampling

    Full text link
    A model-assisted semiparametric method of estimating finite population totals is investigated to improve the precision of survey estimators by incorporating multivariate auxiliary information. The proposed superpopulation model is a single-index model which has proven to be a simple and efficient semiparametric tool in multivariate regression. A class of estimators based on polynomial spline regression is proposed. These estimators are robust against deviation from single-index models. Under standard design conditions, the proposed estimators are asymptotically design-unbiased, consistent and asymptotically normal. An iterative optimization routine is provided that is sufficiently fast for users to analyze large and complex survey data within seconds. The proposed method has been applied to simulated datasets and MU281 dataset, which have provided strong evidence that corroborates with the asymptotic theory.Comment: 30 page

    Kernel-based methods for combining information of several frame surveys

    Get PDF
    A sample selected from a single sampling frame may not represent adequatly the entire population. Multiple frame surveys are becoming increasingly used and popular among statistical agencies and private organizations, in particular in situations where several sampling frames may provide better coverage or can reduce sampling costs for estimating population quantities of interest. Auxiliary information available at the population level is often categorical in nature, so that incorporating categorical and continuous information can improve the efficiency of the method of estimation. Nonparametric regression methods represent a widely used and flexible estimation approach in the survey context. We propose a kernel regression estimator for dual frame surveys that can handle both continuous and categorical data. This methodology is extended to multiple frame surveys. We derive theoretical properties of the proposed methods and numerical experiments indicate that the proposed estimator perform well in practical settings under different scenarios.Ministerio de Economía y CompetitividadConsejería de Economía, Innovación, Ciencia y Emple
    corecore