14 research outputs found
International division of labour and structural unemployment
In INTERECONOMICS No. 12, 1975 the case for relocation of industries in developing countries was discussed by representatives of German industry. The following article deals with the same problem from the trade unions’ point of view
Production-related surface and subsurface properties and fatigue life of hybrid roller bearing components
By combining different materials, for example, high-strength steel and unalloyed structural steel, hybrid components with specifically adapted properties to a certain application can be realized. The mechanical processing, required for production, influences the subsurface properties, which have a deep impact on the lifespan of solid components. However, the influence of machining-induced subsurface properties on the operating behavior of hybrid components with a material transition in axial direction has not been investigated. Therefore, friction-welded hybrid shafts were machined with different process parameters for hard-turning and subsequent deep rolling. After machining, subsurface properties such as residual stresses, microstructures, and hardness of the machined components were analyzed. Significant influencing parameters on surface and subsurface properties identified in analogy experiments are the cutting-edge microgeometry, S, and the feed, f, during turning. The deep-rolling overlap, u, hardly changes the residual stress depth profile, but it influences the surface roughness strongly. Experimental tests to determine fatigue life under combined rolling and rotating bending stress were carried out. Residual stresses of up to −1000 MPa, at a depth of 200 µm, increased the durability regarding rolling-contact fatigue by 22%, compared to the hard-turned samples. The material transition was not critical for failure. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Investigations on Additively Manufactured Stainless Bearings
Additive manufacturing with multi-material design offers great possibilities for lightweight and function-integrated components. A process chain was developed in which hybrid steel–steel-components with high fatigue strength were produced. For this, a material combination of stainless powder material Rockit® (0.52 wt.% C, 0.9% Si, 14% Cr, 0.4% Mo, 1.8% Ni, 1.2% V, bal. Fe) cladded onto ASTM A572 mild steel by plasma arc powder deposition welding was investigated. Extensive material characterization has shown that defect-free claddings can be produced by carefully adjusting the welding process. With a tailored heat treatment strategy and machining of the semi-finished products, bearing washers for a thrust cylindrical roller bearing were produced. These washers showed a longer fatigue life than previously produced bearing washers with AISI 52100 bearing steel as cladding. It was also remarkable that the service life with the Rockit® cladding material was longer than that of conventional monolithic AISI 52100 washers. This was reached through a favourable microstructure with finely distributed vanadium and chromium carbides in a martensitic matrix as well as the presence of compressive residual stresses, which are largely retained even after testing. The potential for further enhancement of the cladding performance through Tailored Forming was investigated in compression and forging tests and was found to be limited due to low forming capacity of the material
Investigations on tailored forming of aisi 52100 as rolling bearing raceway
Hybrid cylindrical roller thrust bearing washers of type 81212 were manufactured by tailored forming. An AISI 1022M base material, featuring a sufficient strength for structural loads, was cladded with the bearing steel AISI 52100 by plasma transferred arc welding (PTA). Though AISI 52100 is generally regarded as non-weldable, it could be applied as a cladding material by adjusting PTA parameters. The cladded parts were investigated after each individual process step and subsequently tested under rolling contact load. Welding defects that could not be completely eliminated by the subsequent hot forming were characterized by means of scanning acoustic microscopy and micrographs. Below the surface, pores with a typical size of ten µm were found to a depth of about 0.45 mm. In the material transition zone and between individual weld seams, larger voids were observed. Grinding of the surface after heat treatment caused compressive residual stresses near the surface with a relatively small depth. Fatigue tests were carried out on an FE8 test rig. Eighty-two percent of the calculated rating life for conventional bearings was achieved. A high failure slope of the Weibull regression was determined. A relationship between the weld defects and the fatigue behavior is likely. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Production-Related Surface and Subsurface Properties and Fatigue Life of Hybrid Roller Bearing Components
By combining different materials, for example, high-strength steel and unalloyed structural steel, hybrid components with specifically adapted properties to a certain application can be realized. The mechanical processing, required for production, influences the subsurface properties, which have a deep impact on the lifespan of solid components. However, the influence of machining-induced subsurface properties on the operating behavior of hybrid components with a material transition in axial direction has not been investigated. Therefore, friction-welded hybrid shafts were machined with different process parameters for hard-turning and subsequent deep rolling. After machining, subsurface properties such as residual stresses, microstructures, and hardness of the machined components were analyzed. Significant influencing parameters on surface and subsurface properties identified in analogy experiments are the cutting-edge microgeometry, S¯, and the feed, f, during turning. The deep-rolling overlap, u, hardly changes the residual stress depth profile, but it influences the surface roughness strongly. Experimental tests to determine fatigue life under combined rolling and rotating bending stress were carried out. Residual stresses of up to −1000 MPa, at a depth of 200 µm, increased the durability regarding rolling-contact fatigue by 22%, compared to the hard-turned samples. The material transition was not critical for failure
Investigations on Additively Manufactured Stainless Bearings
Additive manufacturing with multi-material design offers great possibilities for lightweight and function-integrated components. A process chain was developed in which hybrid steel–steel-components with high fatigue strength were produced. For this, a material combination of stainless powder material Rockit® (0.52 wt.% C, 0.9% Si, 14% Cr, 0.4% Mo, 1.8% Ni, 1.2% V, bal. Fe) cladded onto ASTM A572 mild steel by plasma arc powder deposition welding was investigated. Extensive material characterization has shown that defect-free claddings can be produced by carefully adjusting the welding process. With a tailored heat treatment strategy and machining of the semi-finished products, bearing washers for a thrust cylindrical roller bearing were produced. These washers showed a longer fatigue life than previously produced bearing washers with AISI 52100 bearing steel as cladding. It was also remarkable that the service life with the Rockit® cladding material was longer than that of conventional monolithic AISI 52100 washers. This was reached through a favourable microstructure with finely distributed vanadium and chromium carbides in a martensitic matrix as well as the presence of compressive residual stresses, which are largely retained even after testing. The potential for further enhancement of the cladding performance through Tailored Forming was investigated in compression and forging tests and was found to be limited due to low forming capacity of the material