8 research outputs found

    Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in <i>Bacillus cereus Spores</i>

    Get PDF
    Spores of the bacterium Bacillus cereus can cause disease in humans due to contamination of raw materials for food manufacturing. These dormant, resistant spores can survive for years in the environment, but can germinate and grow when their surroundings become suitable, and spore germination proteins play an important role in the decision to germinate. Since germinated spores have lost dormant spores’ extreme resistance, knowledge about the formation and function of germination proteins could be useful in suggesting new preservation strategies to control B. cereus spores. In this study, we confirmed that the GerR germinant receptor’s (GR) A, B, and C subunits and GerD co-localize in B. cereus spore inner membrane (IM) foci termed germinosomes. The interaction between these proteins was examined by using fusions to the fluorescent reporter proteins SGFP2 and mScarlet-I and Förster Resonance Energy Transfer (FRET). This work found that the FRET efficiency was 6% between GerR(A-C-B)–SGFP2 and GerD–mScarlet-I, but there was no FRET between GerD–mScarlet-I and either GerRA–SGFP2 or GerRC–SGFP2. These results and that GerD does not interact with a GR C-subunit in vitro suggest that, in the germinosome, GerD interacts primarily with the GR B subunit. The dynamics of formation of germinosomes with GerR(A-C-B)–SGFP2 and GerD–mScarlet-I was also followed during sporulation. Our results showed heterogeneity in the formation of FRET positive foci of GerR(A-C-B)–SGFP2 and GerD–mScarlet-I; and while some foci formed at the same time, the formation of foci in the FRET channel could be significantly delayed. The latter finding suggests that either the GerR GR can at least transiently form IM foci in the absence of GerD, or that, while GerD is essential for GerR foci formation, the time to attain the final germinosome structure with close contacts between GerD and GerR can be heterogeneous

    The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation

    Get PDF
    The quality of super resolution images obtained by stochastic single-molecule microscopy critically depends on image analysis algorithms. We find that the choice of background estimator is often the most important determinant of reconstruction quality. A variety of techniques have found use, but many have a very narrow range of applicability depending upon the characteristics of the raw data. Importantly, we observe that when using otherwise accurate algorithms, unaccounted background components can give rise to biases on scales defeating the purpose of super-resolution microscopy. We find that a temporal median filter in particular provides a simple yet effective solution to the problem of background estimation, which we demonstrate over a range of imaging modalities and different reconstruction methods

    Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    Get PDF
    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The signal-to-noise ratio of Re-scan Confocal Microscopy is improved by a factor of 4 compared to standard confocal microscopy and the lateral resolution of Re-scan Confocal Microscopy is 170 nm (compared to 240 nm for diffraction limited resolution, 488 nm excitation, 1.49 NA). Apart from improved sensitivity and resolution, the optical setup of Re-scan Confocal Microscopy is flexible in its configuration in terms of control of the mirrors, lasers and filters. Because of this flexibility, the Re-scan Confocal Microscopy can be configured to address specific biological applications. In this paper, we explore a number of possible configurations of Re-scan Confocal Microscopy for specific biomedical applications such as multicolour, FRET, ratio-metric (e.g. pH and intracellular Ca2+ measurements) and FRAP imaging
    corecore