148 research outputs found
Responsible innovation in stem cell research: using responsibility as a strategy
Responsible innovation has been introduced as an important condition for advancing the field of regenerative medicine. This is reflected in the frequent references to responsible research conduct and responsible innovation in guidelines and recommendations in academic literature. The meaning of responsibility, how responsibility could be fostered and the context in which responsibilities should be enacted, however, remain unclear. The goal of this paper is to clarify the concept of responsibility in stem cell research and to illustrate how this concept could inform strategies to deal effectively with the ethical implications of stem cell research. Responsibility can be dissected into four categories: responsibility-As-Accountability, responsibility-As-liability, responsibility-As-An-obligation and responsibility-As-A-virtue. The authors focus on responsible research conduct and responsible innovation in general to move beyond the scope of research integrity and illustrate that different notions of responsibility have different implications for how stem cell research is organized. Plain language summary Literature and guidelines mention that responsible innovation could help the field of stem cell research to deal with ethical challenges. However, in this literature and guidelines it does not become clear how a'responsibility' should be understood, how responsibilities are recognized, how responsibilities are shared and how someone could take responsibility. In this article, different types of responsibility are discussed: responsibility-As-Accountability, responsibility-As-liability, responsibility-As-An-obligation and responsibility-As-A-virtue. The types are discussed according to how they are different from one another and how they can be used to organize stem cell research. It is shown that these different types of responsibility help not only with research integrity issues but also with societal and other types of ethical challenges. Tweetable abstract Responsible innovation could advance the field of stem cell research. By considering different notions of responsibility, possibilities emerge to frame ethical challenges and organize stem cell research accordingly. #ResponsibleInnovation #StemCells #Bioethic
Human Organ Culture: Updating the Approach to Bridge the Gap from In Vitro to In Vivo in Inflammation, Cancer, and Stem Cell Biology
Human studies, critical for developing new diagnostics and therapeutics, are limited by ethical and logistical issues, and preclinical animal studies are often poor predictors of human responses. Standard human cell cultures can address some of these concerns but the absence of the normal tissue microenvironment can alter cellular responses. Three-dimensional cultures that position cells on synthetic matrices, or organoid or organ-on-a-chip cultures, in which different cell spontaneously organize contacts with other cells and natural matrix only partly overcome this limitation. Here, we review how human organ cultures (HOCs) can more faithfully preserve in vivo tissue architecture and can better represent disease-associated changes. We will specifically describe how HOCs can be combined with both traditional and more modern morphological techniques to reveal how anatomic location can alter cellular responses at a molecular level and permit comparisons among different cells and different cell types within the same tissue. Examples are provided involving use of HOCs to study inflammation, cancer, and stem cell biology.The authors would like to express their gratitude to The National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (RA-L, JB)
Qualitative thematic analysis of consent forms used in cancer genome sequencing
<p>Abstract</p> <p>Background</p> <p>Large-scale whole genome sequencing (WGS) studies promise to revolutionize cancer research by identifying targets for therapy and by discovering molecular biomarkers to aid early diagnosis, to better determine prognosis and to improve treatment response prediction. Such projects raise a number of ethical, legal, and social (ELS) issues that should be considered. In this study, we set out to discover how these issues are being handled across different jurisdictions.</p> <p>Methods</p> <p>We examined informed consent (IC) forms from 30 cancer genome sequencing studies to assess (1) stated purpose of sample collection, (2) scope of consent requested, (3) data sharing protocols (4) privacy protection measures, (5) described risks of participation, (6) subject re-contacting, and (7) protocol for withdrawal.</p> <p>Results</p> <p>There is a high degree of similarity in how cancer researchers engaged in WGS are protecting participant privacy. We observed a strong trend towards both using samples for additional, unspecified research and sharing data with other investigators. IC forms were varied in terms of how they discussed re-contacting participants, returning results and facilitating participant withdrawal. Contrary to expectation, there were no consistent trends that emerged over the eight year period from which forms were collected.</p> <p>Conclusion</p> <p>Examining IC forms from WGS studies elucidates how investigators are handling ELS challenges posed by this research. This information is important for ensuring that while the public benefits of research are maximized, the rights of participants are also being appropriately respected.</p
A tiered-layered-staged model for informed consent in personal genome testing
In recent years, developments in genomics technologies have led to the rise of commercial personal genome testing (PGT): broad genome-wide testing for multiple diseases simultaneously. While some commercial providers require physicians to order a personal genome test, others can be accessed directly. All providers advertise directly to consumers and offer genetic risk information about dozens of diseases in one single purchase. The quantity and the complexity of risk information pose challenges to adequate pre-test and post-test information provision and informed consent. There are currently no guidelines for what should constitute informed consent in PGT or how adequate informed consent can be achieved. In this paper, we propose a tiered-layered-staged model for informed consent. First, the proposed model is tiered as it offers choices between categories of diseases that are associated with distinct ethical, personal or societal issues. Second, the model distinguishes layers of information with a first layer offering minimal, indispensable information that is material to all consumers, and additional layers offering more detailed information made available upon request. Finally, the model stages informed consent as a process by feeding information to consumers in each subsequent stage of the process of undergoing a test, and by accommodating renewed consent for test result updates, resulting from the ongoing development of the science underlying PGT. A tiered-layered-staged model for informed consent with a focus on the consumer perspective can help overcome the ethical problems of information provision and informed consent in direct-to-consumer PGT.European Journal of Human Genetics advance online publication, 21 November 2012; doi:10.1038/ejhg.2012.237
Mast cells disrupt the function of the esophageal epithelial barrier
Mast cells (MCs) accumulate in the epithelium of patients with eosinophilic esophagitis (EoE), an inflammatory disorder characterized by extensive esophageal eosinophilic infiltration. Esophageal barrier dysfunction plays an important role in the pathophysiology of EoE. We hypothesized that MCs contribute to the observed impaired esophageal epithelial barrier. Herein, we demonstrate that coculture of differentiated esophageal epithelial cells with immunoglobulin E-activated MCs significanly decreased epithelial resistance by 30% and increased permeability by 22% compared with non-activated MCs. These changes were associated with decreased messenger RNA expression of barrier proteins filaggrin, desmoglein-1 and involucrin, and antiprotease serine peptidase inhibitor kazal type 7. Using targeted proteomics, we detected various cytokines in coculture supernatants, most notably granulocyte-macrophage colony-stimulating factor and oncostatin M (OSM). OSM expression was increased by 12-fold in active EoE and associated with MC marker genes. Furthermore, OSM receptor-expressing esophageal epithelial cells were found in the esophageal tissue of patients with EoE, suggesting that the epithelial cells may respond to OSM. Stimulation of esophageal epithelial cells with OSM resulted in a dose-dependent decrease in barrier function and expression of filaggrin and desmoglein-1 and an increase in protease calpain-14. Taken together, these data suggest a role for MCs in decreasing esophageal epithelial barrier function in EoE, which may in part be mediated by OSM
Genome sequencing and carrier testing: decisions on categorization and whether to disclose results of carrier testing
We are investigating the use of genome sequencing for preconception carrier testing. Genome sequencing could identify one or more of thousands of X-linked or autosomal recessive conditions that could be disclosed during preconception or prenatal counseling. Therefore, a framework that helps both clinicians and patients understand the possible range of findings is needed to respect patient preferences by ensuring that information about only the desired types of genetic conditions are provided to a given patient
Identifiability and privacy in pluripotent stem cell research
Data sharing is an essential element of research; however, recent scientific and social developments have challenged conventional methods for protecting privacy. Here we provide guidance for determining data sharing thresholds for human pluripotent stem cell research aimed at a wide range of stakeholders, including research consortia, biorepositories, policy-makers, and funders.The International Stem Cell Forum and the Stem Cell Network of Canada
- …