15 research outputs found

    A semianalytic time-resolved poro-elasto-plastic model for wellbore stability and stimulation

    Get PDF
    Wellbore stability problems and stimulation operations call for models helping in understanding the subsurface behaviour and optimizing engineering performance. We present a fast, iteratively coupled model for the flow and mechanical behaviour that employs a time-sequential approach. Updates of pore pressure are calculated in a timestepping approach and propagated analytically to updates of the mechanical response. This way, the spatial and temporal evolution of pressure and mechanical response around a wellbore can be evaluated. The sequential approach facilitates the incorporation of pressure diffusion and of time-dependent plasticity. Also, it facilitates the implementation of permeability evolving with time, due to plasticity or stimulation. The model has been validated by means of a coupled numerical simulator. Its capabilities are demonstrated with a selection of sensitivity runs for typical parameters. Ongoing investigations target geothermal energy operations through the incorporation of thermo-elastic stresses and more advanced plasticity models

    How earthquakes are induced

    No full text

    A semianalytic time-resolved poro-elasto-plastic model for wellbore stability and stimulation

    No full text
    Wellbore stability problems and stimulation operations call for models helping in understanding the subsurface behaviour and optimizing engineering performance. We present a fast, iteratively coupled model for the flow and mechanical behaviour that employs a time-sequential approach. Updates of pore pressure are calculated in a timestepping approach and propagated analytically to updates of the mechanical response. This way, the spatial and temporal evolution of pressure and mechanical response around a wellbore can be evaluated. The sequential approach facilitates the incorporation of pressure diffusion and of time-dependent plasticity. Also, it facilitates the implementation of permeability evolving with time, due to plasticity or stimulation. The model has been validated by means of a coupled numerical simulator. Its capabilities are demonstrated with a selection of sensitivity runs for typical parameters. Ongoing investigations target geothermal energy operations through the incorporation of thermo-elastic stresses and more advanced plasticity models

    3-D mechanical analysis of complex reservoirs : a novel mesh-free approach

    No full text
    Building geomechanical models for induced seismicity in complex reservoirs poses a major challenge, in particular if many faults need to be included. We developed a novel way of calculating induced stress changes and associated seismic moment response for structurally complex reservoirs with tens to hundreds of faults. Our specific target was to improve the predictive capability of stress evolution along multiple faults, and to use the calculations to enhance physics-based understanding of the reservoir seismicity. Our methodology deploys a mesh-free numerical and analytical approach for both the stress calculation and the seismic moment calculation. We introduce a high-performance computational method for high-resolution induced Coulomb stress changes along faults, based on a Green's function for the stress response to a nucleus of strain. One key ingredient is the deployment of an octree representation and calculation scheme for the nuclei of strain, based on the topology and spatial variability of the mesh of the reservoir flow model. Once the induced stress changes are evaluated along multiple faults, we calculate potential seismic moment release in a fault system supposing an initial stress field. The capability of the approach, dubbed as MACRIS (Mechanical Analysis of Complex Reservoirs for Induced Seismicity) is proven through comparisons with finite element models. Computational performance and suitability for probabilistic assessment of seismic hazards are demonstrated though the use of the complex, heavily faulted Gullfaks field

    Geomechanical models for induced seismicity in the Netherlands : Inferences from simplified analytical, finite element and rupture model approaches

    No full text
    In the Netherlands, over 190 gas fields of varying size have been exploited, and 15% of these have shown seismicity. The prime cause for seismicity due to gas depletion is stress changes caused by pressure depletion and by differential compaction. The observed onset of induced seismicity due to gas depletion in the Netherlands occurs after a considerable pressure drop in the gas fields. Geomechanical studies show that both the delay in the onset of induced seismicity and the nonlinear increase in seismic moment observed for the induced seismicity in the Groningen field can be explained by a model of pressure depletion, if the faults causing the induced seismicity are not critically stressed at the onset of depletion. Our model shows concave patterns of log moment with time for individual faults. This suggests that the growth of future seismicity could well be more limited than would be inferred from extrapolation of the observed trend between production or compaction and seismicity. The geomechanical models predict that seismic moment increase should slow down significantly immediately after a production decrease, independently of the decay rate of the compaction model. These findings are in agreement with the observed reduced seismicity rates in the central area of the Groningen field immediately after production decrease on 17 January 2014. The geomechanical model findings therefore support scope for mitigating induced seismicity by adjusting rates of production and associated pressure change. These simplified models cannot serve as comprehensive models for predicting induced seismicity in any particular field. To this end, a more detailed field-specific study, taking into account the full complexity of reservoir geometry, depletion history and mechanical properties, is required

    Geomechanical models for induced seismicity in the Netherlands : Inferences from simplified analytical, finite element and rupture model approaches

    No full text
    In the Netherlands, over 190 gas fields of varying size have been exploited, and 15% of these have shown seismicity. The prime cause for seismicity due to gas depletion is stress changes caused by pressure depletion and by differential compaction. The observed onset of induced seismicity due to gas depletion in the Netherlands occurs after a considerable pressure drop in the gas fields. Geomechanical studies show that both the delay in the onset of induced seismicity and the nonlinear increase in seismic moment observed for the induced seismicity in the Groningen field can be explained by a model of pressure depletion, if the faults causing the induced seismicity are not critically stressed at the onset of depletion. Our model shows concave patterns of log moment with time for individual faults. This suggests that the growth of future seismicity could well be more limited than would be inferred from extrapolation of the observed trend between production or compaction and seismicity. The geomechanical models predict that seismic moment increase should slow down significantly immediately after a production decrease, independently of the decay rate of the compaction model. These findings are in agreement with the observed reduced seismicity rates in the central area of the Groningen field immediately after production decrease on 17 January 2014. The geomechanical model findings therefore support scope for mitigating induced seismicity by adjusting rates of production and associated pressure change. These simplified models cannot serve as comprehensive models for predicting induced seismicity in any particular field. To this end, a more detailed field-specific study, taking into account the full complexity of reservoir geometry, depletion history and mechanical properties, is required
    corecore