11 research outputs found

    The 5S rRNA maturase, ribonuclease M5, is a Toprim domain family member

    Get PDF
    The maturation of 5S ribosomal RNA in low G+C Gram-positive bacteria is catalyzed by a highly conserved, ∼190 residue, enzyme, called ribonuclease M5 (RNase M5). Sequence alignment had predicted that the N-terminal half of RNase M5 would consist of a Toprim domain, a protein fold found in type IA and type II topoisomerases, DnaG-like primases, OLD family nucleases and RecR proteins [L. Aravind, D. D. Leipe and E. V. Koonin (1998) Nucleic Acids Res., 26, 4205–4213]. Here, we present structural modelling data and a mutational analysis of RNase M5 that confirms this hypothesis. The N-terminal half of RNase M5 can be fitted to the Toprim domain of the DnaG catalytic core. Mutation of amino acid residues highly conserved among RNase M5 enzymes and members of the Toprim domain family showed that alteration of residues critical for topoisomerase and primase activity also had a dramatic effect on the cleavage of 5S rRNA precursor by RNase M5 both in vivo and in vitro. This suggests that the mechanisms of double-stranded RNA cleavage by RNase M5 and double-stranded DNA cleavage by members of the topoisomerase family are related

    Ribonuclease M5 Has Few, If Any, mRNA Substrates in Bacillus subtilis

    No full text
    In Bacillus subtilis, maturation of 5S rRNA is catalyzed by an enzyme called RNase M5. We searched for potential mRNA substrates for RNase M5 by gene array technology, based on the premise that most endonucleolytic cleavages have an effect on the stability of RNA and hence on steady-state levels of expression. Only a handful of genes had significantly altered expression in rnmV mutants compared to wild-type strains that could subsequently be confirmed by Northern blotting. The effect of RNase M5 on the expression of the best candidates, the odhAB and sucCD operons, is indirect, by a mechanism we do not yet understand. We show that an effect of RNase M5 on the expression of the remaining candidate, ctsR, is due to the failure to process the 5S rRNA contained in the rrnW lying directly upstream. We thus conclude that RNase M5 has very few or possibly no mRNA substrates in B. subtilis
    corecore