268 research outputs found
Extinction of cue-evoked food seeking recruits a GABAergic interneuron ensemble in the dorsal medial prefrontal cortex of mice
Animals must quickly adapt food-seeking strategies to locate nutrient sources in dynamically changing environments. Learned associations between food and environmental cues that predict its availability promote food-seeking behaviors. However, when such cues cease to predict food availability, animals undergo 'extinction' learning, resulting in the inhibition of food-seeking responses. Repeatedly activated sets of neurons, or 'neuronal ensembles', in the dorsal medial prefrontal cortex (dmPFC) are recruited following appetitive conditioning and undergo physiological adaptations thought to encode cue-reward associations. However, little is known about how the recruitment and intrinsic excitability of such dmPFC ensembles are modulated by extinction learning. Here, we used in vivo 2-Photon imaging in male Fos-GFP mice that express green fluorescent protein (GFP) in recently behaviorally-activated neurons to determine the recruitment of activated pyramidal and GABAergic interneuron mPFC ensembles during extinction. During extinction, we revealed a persistent activation of a subset of interneurons which emerged from a wider population of interneurons activated during the initial extinction session. This activation pattern was not observed in pyramidal cells, and extinction learning did not modulate the excitability properties of activated neurons. Moreover, extinction learning reduced the likelihood of reactivation of pyramidal cells activated during the initial extinction session. Our findings illuminate novel neuronal activation patterns in the dmPFC underlying extinction of food-seeking, and in particular, highlight an important role for interneuron ensembles in this inhibitory form of learning
Bumble bees strategically use ground level linear features in navigation
Extended ground level structures like roads or field edges can be important cues for navigating animals,seen for example in road-following pigeons. In a landscape devoid of skyline cues but with a rectangular grid of pathways and roads, we used harmonic radar to track free-flying bumble bees,Bombus terrestris. Individual bees consistently used ground level linear features for navigation in a wide range of behavioural contexts. Bee exploration flights, search behaviour and foraging routes were shaped by linear features, with bees frequently flying along and parallel to pathways and roads. Comparisons off light trajectories across these behavioural contexts show that individuals modulated their use of linear features strategically with respect to their individual goals and experience. Bees searching for a feeder used linear features to target their search, while foragers often followed pathways to return to their hive without overshooting. These findings on a major pollinator have important implications for the placements of bee colonies for agriculture and floral resources for conservation
OpenDF - A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems
This paper presents the OpenDF framework and recalls that dataflow programming was once invented to address the problem of parallel computing. We discuss the problems with an imperative style, von Neumann programs, and present what we believe are the advantages of using a dataflow programming model. The CAL actor language is briefly presented and its role in the ISO/MPEG standard is discussed. The Dataflow Interchange Format (DIF) and related tools can be used for analysis of actors and networks, demonstrating the advantages of a dataflow approach. Finally, an overview of a case study implementing an MPEG-4 decoder is given
Recommended from our members
The emergence of a stable neuronal ensemble from a wider pool of activated neurons in the dorsal medial prefrontal cortex during appetitive learning in mice
Animals selectively respond to environmental cues associated with food reward to optimize nutrient intake. Such appetitive CS-US associations are thought to be encoded in select, stable neuronal populations or neuronal ensembles, which undergo physiological modifications during appetitive conditioning. These ensembles in the medial prefrontal cortex (mPFC) control well-established, cue-evoked food seeking, but the mechanisms involved in the genesis of these ensembles are unclear. Here, we utilized male Fos-GFP mice that express the green fluorescent protein (GFP) in recently behaviorally-activated neurons, to reveal how dorsal mPFC neurons are recruited and modified to encode CS-US memory representations using an appetitive conditioning task. In the initial conditioning session, animals did not exhibit discriminated, cue-selective food seeking, but did so in later sessions indicating that a CS-US association was established. Using microprism-based in vivo 2-Photon imaging, we revealed that only a minority of neurons activated during the initial session was consistently activated throughout subsequent conditioning sessions and during cue-evoked memory recall. Notably, using ex vivo electrophysiology we found that neurons activated following the initial session exhibited transient hyper-excitability. Chemogenetically enhancing the excitability of these neurons throughout subsequent conditioning sessions interfered with the development of reliable cue-selective food seeking, indicated by persistent, non-discriminated performance. We demonstrate how appetitive learning consistently activates a subset of neurons to form a stable neuronal ensemble during the formation of a CS-US association. This ensemble may arise from a pool of hyper-excitable neurons activated during the initial conditioning session
Acute, but not longer-term, exposure to environmental enrichment attenuates Pavlovian cue-evoked conditioned approach and Fos expression in the prefrontal cortex in mice.
Funder: The University of Sussex Strategic Development FundsFunder: Sussex Neuroscience 4βyear PhD programmeExposure to environmental enrichment can modify the impact of motivationally relevant stimuli. For instance, previous studies in rats have found that even a brief, acute (~1Β day), but not chronic, exposure to environmentally enriched (EE) housing attenuates instrumental lever pressing for sucrose-associated cues in a conditioned reinforcement setup. Moreover, acute EE reduces corticoaccumbens activity, as measured by decreases in expression of the neuronal activity marker "Fos." Currently, it is not known whether acute EE also reduces sucrose seeking and corticoaccumbens activity elicited by non-contingent or "forced" exposure to sucrose cues, which more closely resembles cue exposure encountered in daily life. We therefore measured the effects of acute/intermittent (1Β day or 6Β day of EE prior to test day) versus chronic (EE throughout conditioning lasting until test day) EE on the ability of a Pavlovian sucrose cue to elicit sucrose seeking (conditioned approach) and Fos expression in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), and nucleus accumbens (NAc) in mice. One day, but not 6Β day or chronic EE , reduced sucrose seeking and Fos in the deep layers of the dorsal mPFC. By contrast, 1Β day, 6Β day, and chronic EE all reduced Fos in the shallow layers of the OFC. None of the EE manipulations modulated NAc Fos expression. We reveal how EE reduces behavioral reactivity to sucrose cues by reducing activity in select prefrontal cortical brain areas. Our work further demonstrates the robustness of EE in its ability to modulate various forms of reward-seeking across species
The OH Masers Towards IRAS 19092+0841
Context. Maser emission is a strong tool for studying high mass star forming
regions and their evolutionary stages. OH masers in particular can trace the
circumstellar material around protostars and determine their magnetic field
strengths at milliarcsecond resolution.
Aims. Imaging OH maser mission towards high mass protostellar objects to
determine their evolutionary stages and to locate the detected maser emission
in the process of high mass star formation.
Methods. In 2007, we surveyed OH maser towards 217 high mass protostellar
objects to study its presence. In this paper, we present a follow up MERLIN
observations of a ground state OH maser emission towards one of these objects,
IRAS 19092+0841.
Results. Emission from the two OH main spectral lines, 1665 and 1667 MHz,
were detected close to the central object. The positions and velocities of the
OH maser features have been determined. The masers are distributed over a
region of ~ 500 corresponding to 22400 AU (or ~ 0.1 pc) at a distance of 4.48
kpc. The polarization properties of the OH maser features were determined as
well. We identify three Zeeman pairs from which we inferred a magnetic field
strength of ~ 4:4mG pointing towards the observer.
Conclusions. The relatively small velocity spread and the relatively wide
spacial distribution of the OH maser features support the suggestion that this
object could be in an early evolutionary state before the presence of disk
and/or jet/outfows.Comment: 6 pages, 2 figures and 3 table
Neuropsychiatric Symptoms in Patients with Aortic Aneurysms
BACKGROUND: Emerging evidence suggests that vascular disease confers vulnerability to a late-onset of depressive illness and the impairment of specific cognitive functions, most notably in the domains of memory storage and retrieval. Lower limb athero-thrombosis and abdominal aortic aneurysm (AAA) have both been previously associated with neuropsychiatric symptoms possibly due to associated intracerebral vascular disease or systemic inflammation, hence suggesting that these illnesses may be regarded as models to investigate the vascular genesis of neuropsychiatric symptoms. The aim of this study was to compare neuropsychiatric symptoms such as depression, anxiety and a variety of cognitive domains in patients who had symptoms of peripheral athero-thrombosis (intermittent claudication) and those who had an asymptomatic abdominal aortic aneurysm AAA. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study, 26 participants with either intermittent claudication or AAA were assessed using a detailed neuropsychiatric assessment battery for various cognitive domains and depression and anxiety symptoms (Hamilton Depression and Anxiety Scales). Student t test and linear regression analyses were applied to compare neuropsychiatric symptoms between patient groups. AAA participants showed greater levels of cognitive impairment in the domains of immediate and delayed memory as compared to patients who had intermittent claudication. Cognitive dysfunction was best predicted by increasing aortic diameter. CRP was positively related to AAA diameter, but not to cognitive function. AAA and aortic diameter in particular were associated with cognitive dysfunction in this study. CONCLUSIONS/SIGNIFICANCE: AAA patients are at a higher risk for cognitive impairment than intermittent claudication patients. Validation of this finding is required in a larger study, but if confirmed could suggest that systemic factors peculiar to AAA may impact on cognitive function.Bernhard T. Baune, Steven J. Unwin, Frances Quirk and Jonathan Golledg
Synaptic Neurotransmission Depression in Ventral Tegmental Dopamine Neurons and Cannabinoid-Associated Addictive Learning
Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction
- β¦