132 research outputs found

    Test fixture design for boron-aluminum and beryllium test panels

    Get PDF
    A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented. The test fixture is required for the separate testing of two boron-aluminum and two beryllium compression panels. This report is presented in conjunction with a complete set of design drawings on the test fixture system

    Evaluation of a Liquid Amine System for Spacecraft Carbon Dioxide Control

    Get PDF
    The analytical and experimental studies are described which were directed toward the acquisition of basic information on utilizing a liquid amine sorbent for in use in a CO2 removal system for manned spacecraft. Liquid amine systems are successfully used on submarines for control of CO2 generated by the crew, but liquid amines were not previously considered for spacecraft applications due to lack of development of satisfactory rotary phase separators. Developments in this area now make consideration of liquid amines practical for spacecraft system CO2 removal. The following major tasks were performed to evaluate liquid amine systems for spacecraft: (1) characterization, through testing, of the basic physical and thermodynamic properties of the amine solution; (2) determination of the dynamic characteristics of a cocurrent flow absorber; and (3) evaluation, synthesis, and selection of a liquid amine system concept oriented toward low power requirements. A low weight, low power system concept was developed. Numerical and graphical data are accompanied by pertinent observations

    Size--sensitive melting characteristics of gallium clusters: Comparison of Experiment and Theory for Ga17+_{17}{}^{+} and Ga20+_{20}{}^{+}

    Get PDF
    Experiments and simulations have been performed to examine the finite-temperature behavior of Ga17+_{17}{}^{+} and Ga20+_{20}{}^{+} clusters. Specific heats and average collision cross sections have been measured as a function of temperature, and the results compared to simulations performed using first principles Density--Functional Molecular--Dynamics. The experimental results show that while Ga17+_{17}{}^{+} apparently undergoes a solid--liquid transition without a significant peak in the specific--heat, Ga20+_{20}{}^{+} melts with a relatively sharp peak. Our analysis of the computational results indicate a strong correlation between the ground--state geometry and the finite--temperature behavior of the cluster. If the ground--state geometry is symmetric and "ordered" the cluster is found to have a distinct peak in the specific--heat. However, if the ground--state geometry is amorphous or "disordered" the cluster melts without a peak in the specific--heat.Comment: 6 figure

    Src Binds Cortactin Through An Sh2 Domain Cystine-Mediated Linkage

    Get PDF
    Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions

    Evaluating how agent methodologies support the specification of the normative environment through the development process

    Full text link
    [EN] Due to the increase in collaborative work and the decentralization of processes in many domains, there is an expanding demand for large-scale, flexible and adaptive software systems to support the interactions of people and institutions distributed in heterogeneous environments. Commonly, these software applications should follow specific regulations meaning the actors using them are bound by rights, duties and restrictions. Since this normative environment determines the final design of the software system, it should be considered as an important issue during the design of the system. Some agent-oriented software engineering methodologies deal with the development of normative systems (systems that have a normative environment) by integrating the analysis of the normative environment of a system in the development process. This paper analyses to what extent these methodologies support the analysis and formalisation of the normative environment and highlights some open issues of the topic.This work is partially supported by the PROMETEOII/2013/019, TIN2012-36586-C03-01, FP7-29493, TIN2011-27652-C03-00, CSD2007-00022 projects, and the CASES project within the 7th European Community Framework Program under the grant agreement No 294931.Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent methodologies support the specification of the normative environment through the development process. Autonomous Agents and Multi-Agent Systems. 1-20. https://doi.org/10.1007/s10458-014-9275-zS120Cossentino, M., Hilaire, V., Molesini, A., & Seidita, V. (Eds.). (2014). Handbook on agent-oriented design processes (Vol. VIII, 569 p. 508 illus.). Berlin: Springer.Akbari, O. (2010). A survey of agent-oriented software engineering paradigm: Towards its industrial acceptance. Journal of Computer Engineering Research, 1, 14–28.Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2011). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379–403.Argente, E., Botti, V., & Julian, V. (2009). GORMAS: An organizational-oriented methodological guideline for open MAS. In Proceedings of AOSE’09 (pp. 440–449).Argente, E., Botti, V., & Julian, V. (2009). Organizational-oriented methodological guidelines for designing virtual organizations. In Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Lecture Notes in Computer Science (Vol. 5518, pp. 154–162).Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative systems in computer science—Ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, & H. Verhagen (Eds.), Normative multi-agent systems, number 09121 in Dagstuhl seminar proceedings.Boella, G., Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems. Computational and Mathematical Organization Theory, 12(2–3), 71–79.Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., & Berger, H. (2008). A methodology for developing multiagent systems as 3d electronic institutions. In M. Luck & L. Padgham (Eds.), Agent-Oriented Software Engineering VIII (Vol. 4951, pp. 103–117). Lecture Notes in Computer Science. Berlin: Springer.Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., & Vazquez-Salceda, J. (2006). Coordination, organizations, institutions and norms in multi-agent systems. LNCS (LNAI) (Vol. 3913).Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by model checking. In Autonomous agents and multi-agent systems (Vol. 12, pp. 239–256). Hingham, MA: Kluwer Academic Publishers.Botti, V., Garrido, A., Giret, A., & Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In Post-proceedings workshops AAMAS2011 (Vol. 7068, pp. 35–49). Berlin: Springer.Breaux, T. (2009). Exercising due diligence in legal requirements acquisition: A tool-supported, frame-based approach. In Proceedings of the IEEE international requirements engineering conference (pp. 225–230).Breaux, T. D., & Baumer, D. L. (2011). Legally reasonable security requirements: A 10-year ftc retrospective. Computers and Security, 30(4), 178–193.Breaux, T. D., Vail, M. W., & Anton, A. I. (2006). Towards regulatory compliance: Extracting rights and obligations to align requirements with regulations. In Proceedings of the 14th IEEE international requirements engineering conference, RE ’06 (pp. 46–55). Washington, DC: IEEE Computer Society.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.Cardoso, H. L., & Oliveira, E. (2008). A contract model for electronic institutions. In COIN’07: Proceedings of the 2007 international conference on Coordination, organizations, institutions, and norms in agent systems III (pp. 27–40).Castor, A., Pinto, R. C., Silva, C. T. L. L., & Castro, J. (2004). Towards requirement traceability in tropos. In WER (pp. 189–200).Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). Modeling and reasoning about service-oriented applications via goals and commitments. ICST conference on digital business.Cliffe, O., Vos, M., & Padget, J. (2006). Specifying and analysing agent-based social institutions using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman, & J. VĂĄzquez-Salceda (Eds.), Coordination, organizations, institutions, and norms in multi-agent systems. Lecture Notes in Computer Science (Vol. 3913, pp. 99–113). Springer. Berlin.Criado, N., Argente, E., Garrido, A., Gimeno, J. A., Igual, F., Botti, V., Noriega, P., & Giret, A. (2011). Norm enforceability in Electronic Institutions? In Coordination, organizations, institutions, and norms in agent systems VI (Vol. 6541, pp. 250–267). Springer.Dellarocas, C., & Klein, M. (2001). Contractual agent societies. In R. Conte & C. Dellarocas (Eds.), Social order in multiagent systems (Vol. 2, pp. 113–133)., Multiagent Systems, Artificial Societies, and Simulated Organizations New York: Springer.DeLoach, S. A. (2008). Developing a multiagent conference management system using the o-mase process framework. In Proceedings of the international conference on agent-oriented software engineering VIII (pp. 168–181).DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-mase; a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244–280.DeLoach, S. A., Padgham, L., Perini, A., Susi, A., & Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. International Journal Agent-Oriented Software Engineering, 3, 416–476.Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Open agent systems? Eighth international workshop on agent oriented software engineering (AOSE) in AAMAS07.Dignum, V. (2003). A model for organizational interaction:based on agents, founded in logic. PhD thesis, Utrecht University.Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in agent societies. Formal approaches to agent-based systems (Vol. 2699).Dignum, V., Vazquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social structure, norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.)Programming multi-agent systems. Lecture Notes in Computer Science (Vol. 3346, pp. 181–198). Berlin: Springer.d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open systems, 186, 38–94.Elsenbroich, C., & Gilbert, N. (2014). Agent-based modelling. In Modelling norms (pp. 65–84). Dordrecht: Springer.Esteva, M., Rosell, B., Rodriguez, J. A., & Arcos, J. L. (2004). AMELI: An agent-based middleware for electronic institutions. In AAMAS04 (pp. 236–243).Fenech, S., Pace, G. J., & Schneider, G. (2009). Automatic conflict detection on contracts. In Proceedings of the 6th international colloquium on theoretical aspects of computing, ICTAC ’09 (pp. 200–214).Garbay, C., Badeig, F., & Caelen, J. (2012). Normative multi-agent approach to support collaborative work in distributed tangible environments. In Proceedings of the ACM 2012 conference on computer supported cooperative work companion, CSCW ’12 (pp. 83–86). New York, NY: ACM.Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on contracts. In Information Systems Development (pp. 243–255).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., & Delaney, B. (2012). An analysis of agent-oriented engineering of e-health systems. In 13th international eorkshop on sgent-oriented software engineering (AOSE-AAMAS).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., and Delaney, B. (2013). Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII, volume 7852, pages 134–150. Springer-Verlag.Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In New perspectives on agreement technologies (Vol. Law, Gover, pp. 563–579). Springer.Gteau, B., Boissier, O., & Khadraoui, D. (2006). Multi-agent-based support for electronic contracting in virtual enterprises. IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 150(3), 73–91.Hollander, C. D., & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2), 6.Hsieh, F.-S. (2005). Automated negotiation based on contract net and petri net. In E-commerce and web technologies. Lecture Notes in Computer Science (Vol. 3590, pp. 148–157).Kollingbaum, M., Jureta, I. J., Vasconcelos, W., & Sycara, K. (2008). Automated requirements-driven definition of norms for the regulation of behavior in multi-agent systems. In Proceedings of the AISB 2008 workshop on behaviour regulation in multi-agent systems, Aberdeen, Scotland, U.K., April 2008.Li, T., Balke, T., Vos, M., Satoh, K., & Padget, J. (2013). Detecting conflicts in legal systems. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (Vol. 7856, pp. 174–189)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Lomuscio, A., Qu, H., & Solanki, M. (2010) Towards verifying contract regulated service composition. Journal of Autonomous Agents and Multi-Agent Systems (pp. 1–29).Lopez, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12, 227–250.Lpez, F. y, Luck, M., & dInverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for software maintenance. In 28th IEEE International Conference on Software Maintenance (ICSM) (pp. 171–180), Sept 2012.Mao, X., & Yu, E. (2005). Organizational and social concepts in agent oriented software engineering. In AOSE IV. Lecture Notes in Artificial Intelligence (Vol. 3382, pp. 184–202).Meyer, J.-J. C., & Wieringa, R. J. (Eds.). (1993). Deontic logic in computer science: Normative system specification. Chichester, UK: Wiley.Okouya, D., & Dignum, V. (2008). Operetta: A prototype tool for the design, analysis and development of multi-agent organizations (demo paper). In AAMAS (pp. 1667–1678).Malone, T. W., Smith J. B., & Olson, G. M. (2001). Coordination theory and collaboration technology. Mahwah, NJ: Lawrence Erlbaum Associates.Oren, N., Panagiotidi, S., VĂĄzquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards a formalisation of electronic contracting environments. COIN (pp. 156–171).Osman, N., Robertson, D., & Walton, C. (2006). Run-time model checking of interaction and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems (pp. 238–240). New York, NY: ACM.Pace, G., Prisacariu, C., & Schneider, G. (2007). Model checking contracts a case study. In Automated technology for verification and analysis. Lecture Notes in Computer Science (Vol. 4762, pp. 82–97).Rotolo, A., & van der Torre, L. (2011). Rules, agents and norms: Guidelines for rule-based normative multi-agent systems. RuleML Europe, 6826, 52–66.Saeki, M., & Kaiya, H. (2008). Supporting the elicitation of requirements compliant with regulations. In CAiSE ’08 (pp. 228–242).Siena, A., Mylopoulos, J., Perini, A., & Susi, A. (2009). Designing law-compliant software requirements. In Proceedings of the 28th international conference on conceptual modeling, ER ’09 (pp. 472–486).Singh, M. P. Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects.Solaiman, E., Molina-Jimenez, C., & Shrivastav, S. (2003). Model checking correctness properties of electronic contracts. In Service-oriented computing—ICSOC 2003. Lecture Notes in Computer Science (Vol. 2910, pp. 303–318). Berlin: Springer.Telang, P. R., & Singh, M. P. (2009). Conceptual modeling: Foundations and applications. Enhancing tropos with commitments (pp. 417–435).VĂĄzquez-Salceda, J., Confalonieri, R., Gomez, I., Storms, P., Nick Kuijpers, S. P., & Alvarez, S. (2009). Modelling contractually-bounded interactions in the car insurance domain. DIGIBIZ 2009.ViganĂČ, F., & Colombetti, M. (2007). Symbolic model checking of institutions. In ICEC (pp. 35–44).Walton, C. D. (2007). Verifiable agent dialogues. Journal of Applied Logic, 5(2):197–213, Logic-Based Agent Verification.Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 529–565.Wooldridge, M., Fisher, M., Huget, M., & Parsons, S. (2002). Model checking multi-agent systems with mable. In AAMAS02 (pp. 952–959). ACM

    Vegetative Ecological Characteristics of Restored Reed (Phragmites australis) Wetlands in the Yellow River Delta, China

    Get PDF
    In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon–Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years’ restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland

    Research in progress: report on the ICAIL 2017 doctoral consortium

    Get PDF
    This paper arose out of the 2017 international conference on AI and law doctoral consortium. There were five students who presented their Ph.D. work, and each of them has contributed a section to this paper. The paper offers a view of what topics are currently engaging students, and shows the diversity of their interests and influences
    • 

    corecore