2 research outputs found

    Cytokines IL-17, TNF and IFN-γ Alter the Expression of Antimicrobial Peptides and Proteins Disparately: A Targeted Proteomics Analysis using SOMAscan Technology

    No full text
    Antimicrobial peptides, also known as host defence peptides, are immunomodulatory molecules required to resolve infections. Antimicrobial peptides and proteins (APPs) are important in the control of infections in the lungs. Despite evidence that APPs exhibit a wide range of immune functions and modulate inflammation, the effect of inflammatory cytokines on the expression of APPs is not completely defined. In this study, we profiled the expression of 39 different APPs in human bronchial epithelial cells (HBEC) using Slow Off-rate Modified Aptamer (SOMAmer)-based protein array, in the presence and absence of three different inflammatory cytokines (IL-17, TNF and IFN-γ). Expression of 13 different APPs was altered in response to IL-17, TNF or IFN-γ. Independent validations of selected proteins from the proteomics screen i.e., those that were significantly enhanced by >2-fold change (p < 0.01) using western blots conclusively demonstrated that inflammatory cytokines alter the expression of APPs differentially. For example, the abundance of cathepsin S was enhanced by only IFN-γ, whereas lipocalin-2 was increased by IL-17 alone. Abundance of elafin increased in presence of IL-17 or TNF, but decreased in response to IFN-γ. Whereas the abundance of cathepsin V decreased following stimulation with IL-17, TNF and IFN-γ. The results of this study demonstrate that inflammatory cytokines alter the expression of APPs disparately. This suggests that the composition of the inflammatory cytokine milieu may influence APPs abundance and thus alter the processes required for infection control and regulation of inflammation in the lungs

    The complete mitochondrial genome of the brown pansy butterfly, Junonia stygia (Aurivillius, 1894), (Insecta: Lepidoptera: Nymphalidae)

    No full text
    The brown pansy, Junonia stygia (Aurivillius, 1894) (Lepidoptera: Nymphalidae), is a widespread West African forest butterfly. Genome skimming by Illumina sequencing allowed assembly of a complete 15,233 bp circular mitogenome from J. stygia consisting of 79.5% AT nucleotides. Mitochondrial gene order and composition is identical to other butterfly mitogenomes. Junonia stygia COX1 features an atypical CGA start codon, while ATP6, COX1, COX2, ND4, and ND4L exhibit incomplete stop codons. Phylogenetic reconstruction supports a monophyletic Subfamily Nymphalinae, Tribe Junoniini, and genus Junonia. The phylogenetic tree places Junonia iphita and J. stygia as basal mitogenome lineages sister to the remaining Junonia sequences
    corecore