119 research outputs found

    A systematic review and quality assessment of case reports of adverse events for borage (Borago officinalis), coltsfoot (Tussilago farfara) and comfrey (Symphytum officinale).

    Get PDF
    Symphytum officinale (comfrey), Tussilago farfara (coltsfoot) and Borago officinalis (borage) have long histories of therapeutic use, but their safety has been questioned due to the presence of unsaturated pyrrolizidine alkaloids (PAs). The evidence base underlying these concerns relies in part on case reports. This systematic review assesses these case reports for their reliability to inform this debate.MethodStudy selection was restricted to case reports describing possible pyrrolizidine alkaloid related harm and ingestion of comfrey, coltsfoot or borage. An extensive search of academic databases was conducted. Papers meeting the criteria were critically appraised.ResultsThe search resulted in 11 appropriate case reports, none of which involved borage. Nine reports were assessed for causality and indicated some degree of association between the material ingested and the adverse event. Lack of unequivocal identification of the species ingested compromised attribution and was a significant source of uncertainty. Three levels of identity confusions were found; misidentification or substitution at the level of the whole herb; omission of appropriate botanical identification and attribution of a specific PA to either comfrey or coltsfoot when it is a constituent found in other plants of established toxicity.ConclusionThese cases are an unreliable body of evidence on which to draw conclusions about the safety of the oral consumption of Symphytum officinale and Tussilago farfara. Toxicological studies based on oral ingestion of phytochemically-complex preparations of these herbs may be the most accurate methodology for assessing clinical risk

    Non-identical smoothing operators for estimating time-frequency interdependence in electrophysiological recordings

    Get PDF
    Synchronization of neural activity from distant parts of the brain is crucial for the coordination of cognitive activities. Because neural synchronization varies both in time and frequency, time–frequency (T-F) coherence is commonly employed to assess interdependences in electrophysiological recordings. T-F coherence entails smoothing the cross and power spectra to ensure statistical consistency of the estimate, which reduces its T-F resolution. This trade-off has been described in detail when the cross and power spectra are smoothed using identical smoothing operators, which may yield spurious coherent frequencies. In this article, we examine the use of non-identical smoothing operators for the estimation of T-F interdependence, i.e., phase synchronization is characterized by phase locking between signals captured by the cross spectrum and we may hence improve the trade-off by selectively smoothing the auto spectra. We first show that the frequency marginal density of the present estimate is bound within [0,1] when using non-identical smoothing operators. An analytic calculation of the bias and variance of present estimators is performed and compared with the bias and variance of standard T-F coherence using Monte Carlo simulations. We then test the use of non-identical smoothing operators on simulated data, whose T-F properties are known through construction. Finally, we analyze empirical data from eyes-closed surface electroencephalography recorded in human subjects to investigate alpha-band synchronization. These analyses show that selectively smoothing the auto spectra reduces the bias of the estimator and may improve the detection of T-F interdependence in electrophysiological data at high temporal resolution

    Scaling Effects and Spatio-Temporal Multilevel Dynamics in Epileptic Seizures

    Get PDF
    Epileptic seizures are one of the most well-known dysfunctions of the nervous system. During a seizure, a highly synchronized behavior of neural activity is observed that can cause symptoms ranging from mild sensual malfunctions to the complete loss of body control. In this paper, we aim to contribute towards a better understanding of the dynamical systems phenomena that cause seizures. Based on data analysis and modelling, seizure dynamics can be identified to possess multiple spatial scales and on each spatial scale also multiple time scales. At each scale, we reach several novel insights. On the smallest spatial scale we consider single model neurons and investigate early-warning signs of spiking. This introduces the theory of critical transitions to excitable systems. For clusters of neurons (or neuronal regions) we use patient data and find oscillatory behavior and new scaling laws near the seizure onset. These scalings lead to substantiate the conjecture obtained from mean-field models that a Hopf bifurcation could be involved near seizure onset. On the largest spatial scale we introduce a measure based on phase-locking intervals and wavelets into seizure modelling. It is used to resolve synchronization between different regions in the brain and identifies time-shifted scaling laws at different wavelet scales. We also compare our wavelet-based multiscale approach with maximum linear cross-correlation and mean-phase coherence measures

    Dynamic causal modelling for EEG and MEG

    Get PDF
    Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of evoked responses, over multiple conditions. This model rests on a biophysical and neurobiological generative model for electrophysiological data. A generative model is a prescription of how data are generated. The inversion of a DCM provides conditional densities on the model parameters and, indeed on the model itself. These densities enable one to answer key questions about the underlying system. A DCM comprises two parts; one part describes the dynamics within and among neuronal sources, and the second describes how source dynamics generate data in the sensors, using the lead-field. The parameters of this spatiotemporal model are estimated using a single (iterative) Bayesian procedure. In this paper, we will motivate and describe the current DCM framework. Two examples show how the approach can be applied to M/EEG experiments

    Quantifying the Dynamics of Coupled Networks of Switches and Oscillators

    Get PDF
    Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems

    Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations

    Get PDF
    The mechanisms of seizure emergence, and the role of brief interictal epileptiform discharges (IEDs) in seizure generation are two of the most important unresolved issues in modern epilepsy research. Our study shows that the transition to seizure is not a sudden phenomenon,but a slow process characterized by the progressive loss of neuronal network resilience. From a dynamical perspective, the slow transition is governed by the principles of critical slowing, a robust natural phenomenon observable in systems characterized by transitions between dynamical regimes. In epilepsy, this process is modulated by the synchronous synaptic input from IEDs. IEDs are external perturbations that produce phasic changes in the slow transition process and exert opposing effects on the dynamics of a seizure-generating network, causing either anti-seizure or pro-seizure effects. We show that the multifaceted nature of IEDs is defined by the dynamical state of the network at the moment of the discharge occurrence

    Modeling Brain Resonance Phenomena Using a Neural Mass Model

    Get PDF
    Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect

    Universal entropy of word ordering across linguistic families

    Get PDF
    Background The language faculty is probably the most distinctive feature of our species, and endows us with a unique ability to exchange highly structured information. In written language, information is encoded by the concatenation of basic symbols under grammatical and semantic constraints. As is also the case in other natural information carriers, the resulting symbolic sequences show a delicate balance between order and disorder. That balance is determined by the interplay between the diversity of symbols and by their specific ordering in the sequences. Here we used entropy to quantify the contribution of different organizational levels to the overall statistical structure of language. Methodology/Principal Findings We computed a relative entropy measure to quantify the degree of ordering in word sequences from languages belonging to several linguistic families. While a direct estimation of the overall entropy of language yielded values that varied for the different families considered, the relative entropy quantifying word ordering presented an almost constant value for all those families. Conclusions/Significance Our results indicate that despite the differences in the structure and vocabulary of the languages analyzed, the impact of word ordering in the structure of language is a statistical linguistic universal
    corecore