21 research outputs found
A synthesis of bacterial and archaeal phenotypic trait data
A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level and 15,000 species-aggregated records. It spans all habitats including soils, marine and fresh waters and sediments, host-associated and thermal. Trait data can find use in clarifying major dimensions of ecological strategy variation across species. They can also be used in conjunction with species and abundance sampling to characterize trait mixtures in communities and responses of traits along environmental gradients
The evolutionary signal in metagenome phyletic profiles predicts many gene functions
Background. The function of many genes is still not known even in model organisms. An increasing availability of microbiome DNA sequencing data provides an opportunity to infer gene function in a systematic manner. Results. We evaluated if the evolutionary signal contained in metagenome phyletic profiles (MPP) is predictive of a broad array of gene functions. The MPPs are an encoding of environmental DNA sequencing data that consists of relative abundances of gene families across metagenomes. We find that such MPPs can accurately predict 826 Gene Ontology functional categories, while drawing on human gut microbiomes, ocean metagenomes, and DNA sequences from various other engineered and natural environments. Overall, in this task, the MPPs are highly accurate, and moreover they provide coverage for a set of Gene Ontology terms largely complementary to standard phylogenetic profiles, derived from fully sequenced genomes. We also find that metagenomes approximated from taxon relative abundance obtained via 16S rRNA gene sequencing may provide surprisingly useful predictive models. Crucially, the MPPs derived from different types of environments can infer distinct, non-overlapping sets of gene functions and therefore complement each other. Consistently, simulations on > 5000 metagenomes indicate that the amount of data is not in itself critical for maximizing predictive accuracy, while the diversity of sampled environments appears to be the critical factor for obtaining robust models. Conclusions. In past work, metagenomics has provided invaluable insight into ecology of various habitats, into diversity of microbial life and also into human health and disease mechanisms. We propose that environmental DNA sequencing additionally constitutes a useful tool to predict biological roles of genes, yielding inferences out of reach for existing comparative genomics approaches
The role of recombination, niche‐specific gene pools and flexible genomes in the ecological speciation of bacteria
Bacteria diversify into genetic clusters analogous to those observed in sexual eukaryotes, but the definition of bacterial species is an ongoing problem. Recent work has focused on adaptation to distinct ecological niches as the main driver of clustering, but there remains debate about the role of recombination in that process. One view is that homologous recombination occurs too rarely for gene flow to constrain divergent selection. Another view is that homologous recombination is frequent enough in many bacterial populations that barriers to gene flow are needed to permit divergence. Niche-specific gene pools have been proposed as a general mechanism to limit gene flow. We use theoretical models to evaluate additional hypotheses that evolving genetic architecture, specifically the effect sizes of genes and gene gain and loss, can limit gene flow between diverging populations. Our model predicts that i) in the presence of gene flow and recombination, ecological divergence is concentrated in few loci of large effect, and ii) high rates of gene flow plus recombination promote gene loss and favor the evolution of niche-specific genes. The results show that changing genetic architecture and gene loss can facilitate ecological divergence, even without niche-specific gene pools. We discuss these results in the context of recent studies of sympatric divergence in microbes
Data Analysis for DNA Stable Isotope Probing Experiments Using Multiple Window High-Resolution SIP
DNA stable isotope probing (DNA-SIP) allows for the identification of microbes that assimilate isotopically labeled substrates into DNA. Here we describe the analysis of sequencing data using the multiple window high-resolution DNA-SIP method (MW-HR-SIP). MW-HR-SIP has improved accuracy over other methods and is easily implemented on the statistical platform R. We also discuss key experimental parameters to consider when designing DNA-SIP experiments and how these parameters affect accuracy of analysis
Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly
The ability to obtain single cell transcriptomes for stable cell types and dynamic cell states is ushering in a new era for biology. We created the Tabula Drosophilae , a single cell atlas of the adult fruit fly which includes 580k cells from 15 individually dissected sexed tissues as well as the entire head and body. Over 100 researchers from the fly community contributed annotations to >250 distinct cell types across all tissues. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types that are shared between tissues, such as blood and muscle cells, allowed the discovery of rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the entire Drosophila community and serves as a comprehensive reference to study genetic perturbations and disease models at single cell resolution.</p