140 research outputs found
Under the right conditions: protecting podocytes from diabetes-induced damage
Hyperglycemia-induced damage to the glomerular podocyte is thought to be a critical early event in diabetic nephropathy. Interventions that prevent podocyte damage or loss have been shown to have potential for the treatment of diabetic nephropathy. New data show that conditioned medium from adipocyte-derived mesenchymal stem cells has the potential to protect podocytes from high-glucose-induced damage. Furthermore, epidermal growth factor may be the critical ingredient mediating this effect. These data suggest that components of the conditioned medium of mesenchymal stem cells, in addition to the cells themselves, may have potential for the treatment of diseases such as diabetic nephropathy
Deletion of Irs2 causes reduced kidney size in mice: role for inhibition of GSK3β?
<p>Abstract</p> <p>Background</p> <p>Male <it>Irs2</it><sup>-/- </sup>mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in <it>Irs2</it><sup>-/- </sup>mice. We identify retarded renal growth in male and female <it>Irs2</it><sup>-/- </sup>mice, independent of diabetes.</p> <p>Results</p> <p>Kidney size and kidney:body weight ratio were reduced by approximately 20% in <it>Irs2</it><sup>-/- </sup>mice at postnatal day 5 and was maintained in maturity. Reduced glomerular number but similar glomerular density was detected in <it>Irs2</it><sup>-/- </sup>kidney compared to wild-type, suggesting intact global kidney structure. Analysis of insulin signalling revealed renal-specific upregulation of PKBβ/Akt2, hyperphosphorylation of GSK3β and concomitant accumulation of β-catenin in <it>Irs2</it><sup>-/- </sup>kidney. Despite this, no significant upregulation of β-catenin targets was detected. Kidney-specific increases in Yes-associated protein (YAP), a key driver of organ size were also detected in the absence of <it>Irs2</it>. YAP phosphorylation on its inhibitory site Ser127 was also increased, with no change in the levels of YAP-regulated genes, suggesting that overall YAP activity was not increased in <it>Irs2</it><sup>-/- </sup>kidney.</p> <p>Conclusions</p> <p>In summary, deletion of <it>Irs2 </it>causes reduced kidney size early in mouse development. Compensatory mechanisms such as increased β-catenin and YAP levels failed to overcome this developmental defect. These data point to <it>Irs2 </it>as an important novel mediator of kidney size.</p
CAMKII as a therapeutic target for growth factor-induced retinal and choroidal neovascularisation
This study was supported by grants from the British Heart Foundation (PG/11/99/29207 and PG/11/94/29169), Fight for Sight, UK (1387/88), Health & Social Care R&D Division, Northern Ireland (STL/4748/13) and the Medical Research Council (MC_PC_15026). We would like to thank Gordon Revolta for excellent assistance with colony management and genotyping.Peer reviewedPublisher PD
Hypoxia-induced responses by endothelial colony-forming cells are modulated by placental growth factor
BACKGROUND: Endothelial colony-forming cells (ECFCs), also termed late outgrowth endothelial cells, are a well-defined circulating endothelial progenitor cell type with an established role in vascular repair. ECFCs have clear potential for cell therapy to treat ischaemic disease, although the precise mechanism(s) underlying their response to hypoxia remains ill-defined. METHODS: In this study, we isolated ECFCs from umbilical cord blood and cultured them on collagen. We defined the response of ECFCs to 1% O(2) exposure at acute and chronic time points. RESULTS: In response to low oxygen, changes in ECFC cell shape, proliferation, size and cytoskeleton phenotype were detected. An increase in the number of senescent ECFCs also occurred as a result of long-term culture in 1% O(2). Low oxygen exposure altered ECFC migration and tube formation in Matrigel®. Increases in angiogenic factors secreted from ECFCs exposed to hypoxia were also detected, in particular, after treatment with placental growth factor (PlGF). Exposure of cells to agents that stabilise hypoxia-inducible factors such as dimethyloxalylglycine (DMOG) also increased PlGF levels. Conditioned medium from both hypoxia-treated and DMOG-treated cells inhibited ECFC tube formation. This effect was reversed by the addition of PlGF neutralising antibody to the conditioned medium, confirming the direct role of PlGF in this effect. CONCLUSIONS: This study deepens our understanding of the response of ECFCs to hypoxia and also identifies a novel and important role for PlGF in regulating the vasculogenic potential of ECFCs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-016-0430-0) contains supplementary material, which is available to authorized users
Heat shock protein 70-mediated sensitization of cells to apoptosis by Carboxyl-Terminal Modulator Protein
<p>Abstract</p> <p>Background</p> <p>The serine/threonine protein kinase B (PKB/Akt) is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP) has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process.</p> <p>Results</p> <p>CTMP is localized to mitochondria. Furthermore, CTMP becomes phosphorylated following the treatment of cells with pervanadate, an insulin-mimetic. Two serine residues (Ser37 and Ser38) were identified as novel <it>in vivo </it>phosphorylation sites of CTMP. Association of CTMP and heat shock protein 70 (Hsp70) inhibits the formation of complexes containing apoptotic protease activating factor 1 and Hsp70. Overexpression of CTMP increased the sensitivity of cells to apoptosis, most likely due to the inhibition of Hsp70 function.</p> <p>Conclusion</p> <p>Our data suggest that phosphorylation on Ser37/Ser38 of CTMP is important for the prevention of mitochondrial localization of CTMP, eventually leading to cell death by binding to Hsp70. In addition to its role in PKB inhibition, CTMP may therefore play a key role in mitochondria-mediated apoptosis by localizing to mitochondria.</p
Selective Inhibition of Retinal Angiogenesis by Targeting PI3 Kinase
Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease
- …