327 research outputs found
Numerical Study of Competing Spin-Glass and Ferromagnetic Order
Two and three dimensional random Ising models with a Gaussian distribution of
couplings with variance and non-vanishing mean value are studied
using the zero-temperature domain-wall renormalization group (DWRG). The DWRG
trajectories in the () plane after rescaling can be collapsed on two
curves: one for and other for . In the first case
the DWRG flows are toward the ferromagnetic fixed point both in two and three
dimensions while in the second case flows are towards a paramagnetic fixed
point and spin-glass fixed point in two and three dimensions respectively. No
evidence for an extra phase is found.Comment: a bit more data is taken, 5 pages, 4 eps figures included, to appear
in PR
A real space renormalization group approach to spin glass dynamics
The slow non-equilibrium dynamics of the Edwards-Anderson spin glass model on
a hierarchical lattice is studied by means of a coarse-grained description
based on renormalization concepts. We evaluate the isothermal aging properties
and show how the occurrence of temperature chaos is connected to a gradual loss
of memory when approaching the overlap length. This leads to rejuvenation
effects in temperature shift protocols and to rejuvenation--memory effects in
temperature cycling procedures with a pattern of behavior parallel to
experimental observations.Comment: 4 pages, 4 figure
Strong rejuvenation in a chiral-glass superconductor
The glassy paramagnetic Meissner phase of a BiSrCaCuO
superconductor ( = 8.18) is investigated by squid magnetometry, using
``dc-memory'' experiments employed earlier to study spin glasses. The
temperature dependence of the zero-field-cooled and thermo-remanent
magnetization is recorded on re-heating after specific cooling protocols, in
which single or multiple halts are performed at constant temperatures. The
'spin' states equilibrated during the halts are retrieved on re-heating. The
observed memory and rejuvenation effects are similar to those observed in
Heisenberg-like spin glasses.Comment: REVTeX 4 style; 5 pages, 5 figure
Critical-point scaling function for the specific heat of a Ginzburg-Landau superconductor
If the zero-field transition in high temperature superconductors such as
YBa_2Cu_3O_7-\delta is a critical point in the universality class of the
3-dimensional XY model, then the general theory of critical phenomena predicts
the existence of a critical region in which thermodynamic functions have a
characteristic scaling form. We report the first attempt to calculate the
universal scaling function associated with the specific heat, for which
experimental data have become available in recent years. Scaling behaviour is
extracted from a renormalization-group analysis, and the 1/N expansion is
adopted as a means of approximation. The estimated scaling function is
qualitatively similar to that observed experimentally, and also to the
lowest-Landau-level scaling function used by some authors to provide an
alternative interpretation of the same data. Unfortunately, the 1/N expansion
is not sufficiently reliable at small values of N for a quantitative fit to be
feasible.Comment: 20 pages; 4 figure
Metastable States in Spin Glasses and Disordered Ferromagnets
We study analytically M-spin-flip stable states in disordered short-ranged
Ising models (spin glasses and ferromagnets) in all dimensions and for all M.
Our approach is primarily dynamical and is based on the convergence of a
zero-temperature dynamical process with flips of lattice animals up to size M
and starting from a deep quench, to a metastable limit. The results (rigorous
and nonrigorous, in infinite and finite volumes) concern many aspects of
metastable states: their numbers, basins of attraction, energy densities,
overlaps, remanent magnetizations and relations to thermodynamic states. For
example, we show that their overlap distribution is a delta-function at zero.
We also define a dynamics for M=infinity, which provides a potential tool for
investigating ground state structure.Comment: 34 pages (LaTeX); to appear in Physical Review
Ultimate precision in cosmic-ray radio detection - The SKA
As of 2023, the low-frequency part of the Square Kilometre Array will go online in Australia. It will constitute the largest and most powerful low-frequency radio-astronomical observatory to date, and will facilitate a rich science programme in astronomy and astrophysics. With modest engineering changes, it will also be able to measure cosmic rays via the radio emission from extensive air showers. The extreme antenna density and the homogeneous coverage provided by more than 60,000 antennas within an area of one km 2 will push radio detection of cosmic rays in the energy range around 10 17 eV to ultimate precision, with superior capabilities in the reconstruction of arrival direction, energy, and an expected depth-of-shower-maximum resolution of < 10 g/cm 2
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
The cytotoxicity and synergistic potential of aspirin and aspirin analogues towards oesophageal and colorectal cancer
Background: Oesophageal cancer (OC) is a deadly cancer because of its aggressive nature with survival rates that have barely improved in decades. Epidemiologic studies have shown that low-dose daily intake of aspirin can decrease the incidence of OC. Methods: The toxicity of aspirin and aspirin derivatives to OC and a colorectal cancer (CRC) cell line were investigated in the presence and absence of platins. Results: The data in this study show the effects of a number of aspirin analogues and aspirin on OC cell lines that originally presented as squamous cell carcinoma (SSC) and adenocarcinoma (ADC). The aspirin analogues fumaryldiaspirin (PN517) and the benzoylsalicylates (PN524, PN528 and PN529), were observed to be more toxic against the OC cell lines than aspirin. Both quantitative and qualitative apoptosis experiments reveal that these compounds largely induce apoptosis, although some necrosis was evident with PN528 and PN529. Failure to recover following the treatment with these analogues emphasized that these drugs are largely cytotoxic in nature. The OE21 (SSC) and OE33 (ADC) cell lines were more sensitive to the aspirin analogues compared to the Flo-1 cell line (ADC). A non-cancerous oesophageal primary cells NOK2101, was used to determine the specificity of the aspirin analogues and cytotoxicity assays revealed that analogues PN528 and PN529 were selectively toxic to cancer cell lines, whereas PN508, PN517 and PN524 also induced cell death in NOK2101. In combination index testing synergistic interactions of the most promising compounds, including aspirin, with cisplatin, oxaliplatin and carboplatin against the OE33 cell line and the SW480 CRC cell line were investigated. Compounds PN517 and PN524, and to a lesser extent PN528, synergised with cisplatin against OE33 cells. Cisplatin and oxaliplatin synergised with aspirin and PN517 when tested against the SW480 cell line. Conclusion: These findings indicate the potential and limitations of aspirin and aspirin analogues as chemotherapeutic agents against OC and CRC when combined with platins
- …