7,940 research outputs found

    Transport of Single Molecules Along the Periodic Parallel Lattices with Coupling

    Full text link
    General discrete one-dimensional stochastic models to describe the transport of single molecules along coupled parallel lattices with period NN are developed. Theoretical analysis that allows to calculate explicitly the steady-state dynamic properties of single molecules, such as mean velocity VV and dispersion DD, is presented for N=1 and N=2 models. For the systems with N>2N>2 exact analytic expressions for the large-time dynamic properties are obtained in the limit of strong coupling between the lattices that leads to dynamic equilibrium between two parallel kinetic pathways.Comment: Submitted to J. Chem. Phy

    No many-scallop theorem: Collective locomotion of reciprocal swimmers

    Full text link
    To achieve propulsion at low Reynolds number, a swimmer must deform in a way that is not invariant under time-reversal symmetry; this result is known as the scallop theorem. We show here that there is no many-scallop theorem. We demonstrate that two active particles undergoing reciprocal deformations can swim collectively; moreover, polar particles also experience effective long-range interactions. These results are derived for a minimal dimers model, and generalized to more complex geometries on the basis of symmetry and scaling arguments. We explain how such cooperative locomotion can be realized experimentally by shaking a collection of soft particles with a homogeneous external field

    Zero Temperature Dynamics of the Weakly Disordered Ising Model

    Full text link
    The Glauber dynamics of the pure and weakly disordered random-bond 2d Ising model is studied at zero-temperature. A single characteristic length scale, L(t)L(t), is extracted from the equal time correlation function. In the pure case, the persistence probability decreases algebraically with the coarsening length scale. In the disordered case, three distinct regimes are identified: a short time regime where the behaviour is pure-like; an intermediate regime where the persistence probability decays non-algebraically with time; and a long time regime where the domains freeze and there is a cessation of growth. In the intermediate regime, we find that P(t)L(t)θP(t)\sim L(t)^{-\theta'}, where θ=0.420±0.009\theta' = 0.420\pm 0.009. The value of θ\theta' is consistent with that found for the pure 2d Ising model at zero-temperature. Our results in the intermediate regime are consistent with a logarithmic decay of the persistence probability with time, P(t)(lnt)θdP(t)\sim (\ln t)^{-\theta_d}, where θd=0.63±0.01\theta_d = 0.63\pm 0.01.Comment: references updated, very minor amendment to abstract and the labelling of figures. To be published in Phys Rev E (Rapid Communications), 1 March 199

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Critical properties of the unconventional spin-Peierls system TiOBr

    Full text link
    We have performed detailed x-ray scattering measurements on single crystals of the spin-Peierls compound TiOBr in order to study the critical properties of the transition between the incommensurate spin-Peierls state and the paramagnetic state at Tc2 ~ 48 K. We have determined a value of the critical exponent beta which is consistent with the conventional 3D universality classes, in contrast with earlier results reported for TiOBr and TiOCl. Using a simple power law fit function we demonstrate that the asymptotic critical regime in TiOBr is quite narrow, and obtain a value of beta_{asy} = 0.32 +/- 0.03 in the asymptotic limit. A power law fit function which includes the first order correction-to-scaling confluent singularity term can be used to account for data outside the asymptotic regime, yielding a more robust value of beta_{avg} = 0.39 +/- 0.05. We observe no evidence of commensurate fluctuations above Tc1 in TiOBr, unlike its isostructural sister compound TiOCl. In addition, we find that the incommensurate structure between Tc1 and Tc2 is shifted in Q-space relative to the commensurate structure below Tc1.Comment: 12 pages, 8 figures. Submitted to Physical Review

    Persistence in systems with algebraic interaction

    Full text link
    Persistence in coarsening 1D spin systems with a power law interaction r1σr^{-1-\sigma} is considered. Numerical studies indicate that for sufficiently large values of the interaction exponent σ\sigma (σ1/2\sigma\geq 1/2 in our simulations), persistence decays as an algebraic function of the length scale LL, P(L)LθP(L)\sim L^{-\theta}. The Persistence exponent θ\theta is found to be independent on the force exponent σ\sigma and close to its value for the extremal (σ\sigma \to \infty) model, θˉ=0.17507588...\bar\theta=0.17507588.... For smaller values of the force exponent (σ<1/2\sigma< 1/2), finite size effects prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid significant boundary effects for small σ\sigma, the system size should grow as [O(1/σ)]1/σ{[{\cal O}(1/\sigma)]}^{1/\sigma}.Comment: 4 pages 4 figure

    Approach to Asymptotic Behaviour in the Dynamics of the Trapping Reaction

    Full text link
    We consider the trapping reaction A + B -> B in space dimension d=1, where the A and B particles have diffusion constants D_A, D_B respectively. We calculate the probability, Q(t), that a given A particle has not yet reacted at time t. Exploiting a recent formulation in which the B particles are eliminated from the problem we find, for t -> \infty, Q(t)exp[(4/π)(ρ2DBt)1/2(Cρ2DAt)1/3+...]Q(t) \sim \exp[-(4/\sqrt{\pi})(\rho^2 D_Bt)^{1/2} - (C \rho^2 D_A t)^{1/3} + ...], where ρ\rho is the density of B particles and CDA/DBC \propto D_A/D_B for DA/DB<<1D_A/D_B << 1.Comment: 8 pages, 2 figures; minor change

    Evidence for the droplet/scaling picture of spin glasses

    Full text link
    We have studied the Parisi overlap distribution for the three dimensional Ising spin glass in the Migdal-Kadanoff approximation. For temperatures T around 0.7Tc and system sizes upto L=32, we found a P(q) as expected for the full Parisi replica symmetry breaking, just as was also observed in recent Monte Carlo simulations on a cubic lattice. However, for lower temperatures our data agree with predictions from the droplet or scaling picture. The failure to see droplet model behaviour in Monte Carlo simulations is due to the fact that all existing simulations have been done at temperatures too close to the transition temperature so that sytem sizes larger than the correlation length have not been achieved.Comment: 4 pages, 6 figure

    Hydrodynamic synchronisation of non-linear oscillators at low Reynolds number

    Full text link
    We introduce a generic model of weakly non-linear self-sustained oscillator as a simplified tool to study synchronisation in a fluid at low Reynolds number. By averaging over the fast degrees of freedom, we examine the effect of hydrodynamic interactions on the slow dynamics of two oscillators and show that they can lead to synchronisation. Furthermore, we find that synchronisation is strongly enhanced when the oscillators are non-isochronous, which on the limit cycle means the oscillations have an amplitude-dependent frequency. Non-isochronity is determined by a nonlinear coupling α\alpha being non-zero. We find that its (α\alpha) sign determines if they synchronise in- or anti-phase. We then study an infinite array of oscillators in the long wavelength limit, in presence of noise. For α>0\alpha > 0, hydrodynamic interactions can lead to a homogeneous synchronised state. Numerical simulations for a finite number of oscillators confirm this and, when α<0\alpha <0, show the propagation of waves, reminiscent of metachronal coordination.Comment: 4 pages, 2 figure

    Velocity Distribution of Topological Defects in Phase-Ordering Systems

    Full text link
    The distribution of interface (domain-wall) velocities v{\bf v} in a phase-ordering system is considered. Heuristic scaling arguments based on the disappearance of small domains lead to a power-law tail, Pv(v)vpP_v(v) \sim v^{-p} for large v, in the distribution of vvv \equiv |{\bf v}|. The exponent p is given by p=2+d/(z1)p = 2+d/(z-1), where d is the space dimension and 1/z is the growth exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to systems described by a vector order parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear in Physical Review E (May 1, 1997
    corecore