109 research outputs found

    Seasonal variability in the intermediate water of the eastern North Atlantic

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1980Observational evidence of seasonal variability below the main thermocline in the eastern North Atlantic is described, and a theoretical model of oceanic response to seasonally varying windstress forcing is constructed to assist in the interpretation of the observations. The observations are historical conductivity-temperature-depth data from the Bay of Biscay region (2° to 20°W, 42° to 52°N), a series of eleven cruises over the three years 1972 through 1974, spaced approximately three months apart. The analysis of the observations utilizes a new technique for identifying the adiabatically leveled density field corresponding to the observed density field. The distribution of salinity anomaly along the leveled surfaces is examined, as are the vertical displacements of observed density surfaces from the leveled reference surfaces, and the available potential energy. Seasonal variations in salinity anomaly and vertical displacement occur as westward propagating disturbances with zonal wavelength 390 (±50) km, phase 71 (±30) days from 1 January, and maximum amplitudes of ±30 ppm and ±20 db respectively. The leveled density field varies seasonally with an amplitude corresponding to a thermocline displacement of ±15 db. The observations are consistent with the predictions of a model in which an ocean of variable stratification with a surface mixed layer and an eastern boundary is forced by seasonal changes in a sinusoidal windstress pattern, when windstress parameters calculated from the observations of Bunker and Worthington (1976) are applied.This work was supported by the Office of Naval Research under contract N00014~76-C-197, NR 083-400

    Available potential energy for mode eddies

    Get PDF
    Also published as: Journal of Physical Oceanography 11 (1981): 30-47Available potential energy (APE) is defined as the difference between total potential plus internal energy of a fluid in a gravity field and a corresponding reference field in which the fluid is redistributed (leveled) adiabatically to have constant stably-stratified densities along geopotential surfaces. Potential energy changes result from local shifts of flu id mass relative to geopotential surfaces that are accompanied by local changes of enthalpy and internal energy and global shifts of mass (because volumes of fluid elements are not conserved) that do not change enthalpy or internal energy. The potential energy changes are examined separately by computing available gravitational potential energy (GPE) per unit mass and total GPE (TGPE) per unit area. A technique for estimating GPE in the ocean is developed by introducirtg a reference density field (or an equivalent specific volume anomaly field) that is a function of pressure only and is connected to the observed field by adiabatic vertical displacements. The full empirical equation of state for seawater is used in the computational algorithm. The accuracy of the estimate is limited by the data and sampling and not by the algorithm itself, which can be made as precise as desired. The reference density field defined locally for an ocean region allows redefinition of dynamic height ΔD (potential energy per unit mass) relative to the reference field. TGPE per unit area becomes simply the horizontal average of dynamic height integrated over depth in the region considered. The reference density surfaces provide a precise approximation to material surfaces for tracing conservative variables such as salinity and potential temperature and for estimating vortex stretching between surfaces. The procedure is applied to the MODE density data collected in 1973. For each group of stations within five 2-week time windows (designated Groups A-E) the estimated GPE is compared with the net APE based on the Boussinesq approximation and to the low-frequency kinetic energy measured from moored buoys. Changes of potential energy of the reference field from one time window to the next are large compared with the GPE within each window, indicating the presence of scales larger than the station grid. An analysis of errors has been made to show the sensitivity of the estimates to data accuracy and sampling frequency.Prepared for the Office of Naval Research under Contract N00014-76-C-0197

    VAX-11 programs for computing available potential energy from CTD data

    Get PDF
    This report documents the W.H.O.I. VAX-11 programs used to calculate available potential energy and related quantities from CTD data using the technique described in Bray and Fofonoff (1981). The report includes examples of how the programs may be used, as well as complete listings of all the required FORTRAN files.Prepared for the Office of Naval Research under Contracts N00014-76-C-197; NR 083-400 and N00014-79-C-0071; NR 083-004 and by the National Science Foundation under Grant OCE-77-19403

    Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators

    Get PDF
    After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
    corecore