140 research outputs found
Multiple prebiotic metals mediate translation.
Today, Mg2+ is an essential cofactor with diverse structural and functional roles in life's oldest macromolecular machine, the translation system. We tested whether ancient Earth conditions (low O2, high Fe2+, and high Mn2+) can revert the ribosome to a functional ancestral state. First, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) was used to compare the effect of Mg2+, Fe2+, and Mn2+ on the tertiary structure of rRNA. Then, we used in vitro translation reactions to test whether Fe2+ or Mn2+ could mediate protein production, and quantified ribosomal metal content. We found that (i) Mg2+, Fe2+, and Mn2+ had strikingly similar effects on rRNA folding; (ii) Fe2+ and Mn2+ can replace Mg2+ as the dominant divalent cation during translation of mRNA to functional protein; and (iii) Fe and Mn associate extensively with the ribosome. Given that the translation system originated and matured when Fe2+ and Mn2+ were abundant, these findings suggest that Fe2+ and Mn2+ played a role in early ribosomal evolution
Dynamical simulation of current fluctuations in a dissipative two-state system
Current fluctuations in a dissipative two-state system have been studied
using a novel quantum dynamics simulation method. After a transformation of the
path integrals, the tunneling dynamics is computed by deterministic integration
over the real-time paths under the influence of colored noise. The nature of
the transition from coherent to incoherent dynamics at low temperatures is
re-examined.Comment: 4 pages, 4 figures; to appear in Phys. Rev. Letter
Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes
This is the peer reviewed version of the following article: Bray, M.S., Wu, J., Padilla, C.C., Stewart, F.J., Fowle, D.A., Henny, C., Simister, R.L., Thompson, K.J., Crowe, S.A. and Glass, J.B. (2020), Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes. Environmental Microbiology Reports, 12: 49-57. https://doi.org/10.1111/1758-2229.12809, which has been published in final form at https://doi.org/10.1111/1758-2229.12809. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.Electroactive type IV pili, or e-pili, are used by some microbial species for extracellular electron transfer. Recent studies suggest that e-pili may be more phylogenetically and structurally diverse than previously assumed. Here, we used updated aromatic density thresholds (≥9.8% aromatic amino acids, ≤22-aa aromatic gaps and aromatic amino acids at residues 1, 24, 27, 50 and/or 51, and 32 and/or 57) to search for putative e-pilin genes in metagenomes from diverse ecosystems with active microbial metal cycling. Environmental putative e-pilins were diverse in length and phylogeny, and included truncated e-pilins in Geobacter spp., as well as longer putative e-pilins in Fe(II)-oxidizing Betaproteobacteria and Zetaproteobacteria
Phase separation transition in liquids and polymers induced by electric field gradients
Spatially uniform electric fields have been used to induce instabilities in
liquids and polymers, and to orient and deform ordered phases of
block-copolymers. Here we discuss the demixing phase transition occurring in
liquid mixtures when they are subject to spatially nonuniform fields. Above the
critical value of potential, a phase-separation transition occurs, and two
coexisting phases appear separated by a sharp interface. Analytical and
numerical composition profiles are given, and the interface location as a
function of charge or voltage is found. The possible influence of demixing on
the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
The epidemiology of postpartum malaria: a systematic review
Pregnant women are more susceptible to malaria than their non-pregnant counterparts. Less is known about the risk of malaria in the postpartum period. The epidemiology of postpartum malaria was systematically reviewed. Eleven articles fitted the inclusion criteria. Of the 10 studies that compared malaria data from the postpartum period with pregnancy data, nine studies suggested that the risk for malaria infection decreased after delivery. All three studies that compared postpartum data with non-pregnant non-postpartum women concluded that the risk did not return to pre-pregnancy levels immediately after delivery. The results of this review have to be carefully interpreted, as the majority of studies were not designed to study postpartum malaria, and there was large variability in study designs and reported outcomes. Current evidence suggests an effort should be made to detect and radically cure malaria during pregnancy so that women do not enter the postpartum period with residual parasites
Recommended from our members
Mathematical analysis of the Escherichia coli chemotaxis signalling pathway
We undertake a detailed mathematical analysis of a recent nonlinear ordinary differential equation (ODE) model describing the chemotactic signalling cascade within an {\it Escherichia coli} cell. The model includes a detailed description of the cell signalling cascade and an average approximation of the receptor activity. A steady-state stability analysis reveals the system exhibits one positive real steady-state which is shown to be asymptotically stable. Given the occurrence of a negative feedback between phosphorylated CheB (CheB-P) and the receptor state, we ask under what conditions, the system may exhibit oscillatory type behaviour. A detailed analysis of parameter space reveals that whilst variation in kinetic rate parameters within known biological limits is unlikely to lead to such behaviour, changes in the total concentration of the signalling proteins does. We postulate that experimentally observed overshoot behaviour can actually be described by damped oscillatory dynamics and consider the relationship between overshoot amplitude, total cell protein concentration and the magnitude of the external ligand stimulus. Model reductions of the full ODE model allow us to understand the link between phosphorylation events and the negative feedback between CheB-P and receptor methylation, as well as elucidate why some mathematical models exhibit overshoot and others do not. Our manuscript closes by discussing intercell variability of total protein concentration as means of ensuring the overall survival of a population as cells are subjected to different environments
Orexin-1 Receptor Co-Localizes with Pancreatic Hormones in Islet Cells and Modulates the Outcome of Streptozotocin-Induced Diabetes Mellitus
Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OX−/−) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX−/− animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes
- …