11,843 research outputs found

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure

    Velocity Distribution of Topological Defects in Phase-Ordering Systems

    Full text link
    The distribution of interface (domain-wall) velocities v{\bf v} in a phase-ordering system is considered. Heuristic scaling arguments based on the disappearance of small domains lead to a power-law tail, Pv(v)vpP_v(v) \sim v^{-p} for large v, in the distribution of vvv \equiv |{\bf v}|. The exponent p is given by p=2+d/(z1)p = 2+d/(z-1), where d is the space dimension and 1/z is the growth exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to systems described by a vector order parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear in Physical Review E (May 1, 1997

    Survival of a diffusing particle in an expanding cage

    Full text link
    We consider a Brownian particle, with diffusion constant D, moving inside an expanding d-dimensional sphere whose surface is an absorbing boundary for the particle. The sphere has initial radius L_0 and expands at a constant rate c. We calculate the joint probability density, p(r,t|r_0), that the particle survives until time t, and is at a distance r from the centre of the sphere, given that it started at a distance r_0 from the centre.Comment: 5 page

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Dynamics of Ordering of Heisenberg Spins with Torque --- Nonconserved Case. I

    Full text link
    We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two parts --- an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically (Langevin simulation) and analytically (approximate closure scheme due to Mazenko), that the torque is irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an analysis, carried out for the first time on a vector order parameter, shows that the closure scheme performs respectably well. For quenches to TcT_c, we show, to O(ϵ2){\cal O}(\epsilon^2), that the torque is irrelevant at the Wilson-Fisher fixed point.Comment: 13 pages, REVTEX, and 19 .eps figures, compressed, Submitted to Phys. Rev.

    Strengths and Weaknesses of Parallel Tempering

    Full text link
    Parallel tempering, also known as replica exchange Monte Carlo, is studied in the context of two simple free energy landscapes. The first is a double well potential defined by two macrostates separated by a barrier. The second is a `golf course' potential defined by microstates having two possible energies with exponentially more high energy states than low energy states. The equilibration time for replica exchange is analyzed for both systems. For the double well system, parallel tempering with a number of replicas that scales as the square root of the barrier height yields exponential speedup of the equilibration time. On the other hand, replica exchange yields only marginal speed-up for the golf course system. For the double well system, the free energy difference between the two wells has a large effect on the equilibration time. Nearly degenerate wells equilibrate much more slowly than strongly asymmetric wells. It is proposed that this difference in equilibration time may lead to a bias in measuring overlaps in spin glasses. These examples illustrate the strengths and weaknesses of replica exchange and may serve as a guide for understanding and improving the method in various applications.Comment: 18 pages, 4 figures. v2: typos fixed and wording changes to improve clarit

    Lifshitz-Slyozov Scaling For Late-Stage Coarsening With An Order-Parameter-Dependent Mobility

    Full text link
    The coarsening dynamics of the Cahn-Hilliard equation with order-parameter dependent mobility, λ(ϕ)(1ϕ2)α\lambda(\phi) \propto (1-\phi^2)^\alpha, is addressed at zero temperature in the Lifshitz-Slyozov limit where the minority phase occupies a vanishingly small volume fraction. Despite the absence of bulk diffusion for α>0\alpha>0, the mean domain size is found to grow as t1/(3+α) \propto t^{1/(3+\alpha)}, due to subdiffusive transport of the order parameter through the majority phase. The domain-size distribution is determined explicitly for the physically relevant case α=1\alpha = 1.Comment: 4 pages, Revtex, no figure

    Critical properties of the unconventional spin-Peierls system TiOBr

    Full text link
    We have performed detailed x-ray scattering measurements on single crystals of the spin-Peierls compound TiOBr in order to study the critical properties of the transition between the incommensurate spin-Peierls state and the paramagnetic state at Tc2 ~ 48 K. We have determined a value of the critical exponent beta which is consistent with the conventional 3D universality classes, in contrast with earlier results reported for TiOBr and TiOCl. Using a simple power law fit function we demonstrate that the asymptotic critical regime in TiOBr is quite narrow, and obtain a value of beta_{asy} = 0.32 +/- 0.03 in the asymptotic limit. A power law fit function which includes the first order correction-to-scaling confluent singularity term can be used to account for data outside the asymptotic regime, yielding a more robust value of beta_{avg} = 0.39 +/- 0.05. We observe no evidence of commensurate fluctuations above Tc1 in TiOBr, unlike its isostructural sister compound TiOCl. In addition, we find that the incommensurate structure between Tc1 and Tc2 is shifted in Q-space relative to the commensurate structure below Tc1.Comment: 12 pages, 8 figures. Submitted to Physical Review
    corecore