19,295 research outputs found
A study of cross sections for excitation of pseudostates
Using the electron-hydrogen scattering Temkin-Poet model we investigate the
behavior of the cross sections for excitation of all of the states used in the
convergent close-coupling (CCC) formalism. In the triplet channel, it is found
that the cross section for exciting the positive-energy states is approximately
zero near-threshold and remains so until a further energy, equal to the energy
of the state, is added to the system. This is consistent with the step-function
hypothesis [Bray, Phys. Rev. Lett. {\bf 78} 4721 (1997)] and inconsistent with
the expectations of Bencze and Chandler [Phys. Rev. A {\bf 59} 3129 (1999)].
Furthermore, we compare the results of the CCC-calculated triplet and singlet
single differential cross sections with the recent benchmark results of
Baertschy et al. [Phys. Rev. A (to be published)], and find consistent
agreement.Comment: Four pages, 5 figure
Valence-shell double photoionization of alkaline-earth-metal atoms
We apply the convergent close-coupling formalism to describe direct double photoionization (DPI) of the valence n s2 shell of alkaline-earth-metal atoms: beryllium (n=2), magnesium (n=3), and calcium (n=4). We consider the range of photon energies below the onset of resonant and Auger ionization processes where the subvalent and core electrons can be treated as spectators. By comparing alkaline-earth-metal atoms with helium, we elucidate the role of the ground state and final ionized state correlations in DPI of various quasi-two-electron atoms
Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results
We consider the pair correlation functions of both the order parameter field
and its square for phase ordering in the model with nonconserved order
parameter, in spatial dimension and spin dimension .
We calculate, in the scaling limit, the exact short-distance singularities of
these correlation functions and compare these predictions to numerical
simulations. Our results suggest that the scaling hypothesis does not hold for
the model. Figures (23) are available on request - email
[email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2
Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter
Corrections to scaling, associated with deviations of the order parameter
from the scaling morphology in the initial state, are studied for systems with
O(n) symmetry at zero temperature in phase-ordering kinetics. Including
corrections to scaling, the equal-time pair correlation function has the form
C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length
scale. The correction-to-scaling exponent, omega, and the correction-to-scaling
function, f_1(x), are calculated for both nonconserved and conserved order
parameter systems using the approximate Gaussian closure theory of Mazenko. In
general, omega is a non-trivial exponent which depends on both the
dimensionality, d, of the system and the number of components, n, of the order
parameter. Corrections to scaling are also calculated for the nonconserved 1-d
XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure
On the number of metastable states in spin glasses
In this letter, we show that the formulae of Bray and Moore for the average
logarithm of the number of metastable states in spin glasses can be obtained by
calculating the partition function with coupled replicas with the symmetry
among these explicitly broken according to a generalization of the `two-group'
ansatz. This equivalence allows us to find solutions of the BM equations where
the lower `band-edge' free energy equals the standard static free energy. We
present these results for the Sherrington-Kirkpatrick model, but we expect them
to apply to all mean-field spin glasses.Comment: 6 pages, LaTeX, no figures. Postscript directly available
http://chimera.roma1.infn.it/index_papers_complex.htm
Corrections to Scaling in Phase-Ordering Kinetics
The leading correction to scaling associated with departures of the initial
condition from the scaling morphology is determined for some soluble models of
phase-ordering kinetics. The result for the pair correlation function has the
form C(r,t) = f_0(r/L) + L^{-\omega} f_1(r/L) + ..., where L is a
characteristic length scale extracted from the energy. The
correction-to-scaling exponent \omega has the value \omega=4 for the d=1
Glauber model, the n-vector model with n=\infty, and the approximate theory of
Ohta, Jasnow and Kawasaki. For the approximate Mazenko theory, however, \omega
has a non-trivial value: omega = 3.8836... for d=2, and \omega = 3.9030... for
d=3. The correction-to-scaling functions f_1(x) are also calculated.Comment: REVTEX, 7 pages, two figures, needs epsf.sty and multicol.st
Velocity Distribution of Topological Defects in Phase-Ordering Systems
The distribution of interface (domain-wall) velocities in a
phase-ordering system is considered. Heuristic scaling arguments based on the
disappearance of small domains lead to a power-law tail,
for large v, in the distribution of . The exponent p is
given by , where d is the space dimension and 1/z is the growth
exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the
conserved case (model B). The nonconserved result is exemplified by an
approximate calculation of the full distribution using a gaussian closure
scheme. The heuristic arguments are readily generalized to conserved case
(model B). The nonconserved result is exemplified by an approximate calculation
of the full distribution using a gaussian closure scheme. The heuristic
arguments are readily generalized to systems described by a vector order
parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear
in Physical Review E (May 1, 1997
Disappearance of the de Almeida-Thouless line in six dimensions
We show that the Almeida-Thouless line in Ising spin glasses vanishes when
their dimension d -> 6 as h_{AT}^2/T_c^2 = C(d-6)^4(1- T/T_c)^{d/2 - 1}, where
C is a constant of order unity. An equivalent result which could be checked by
simulations is given for the one-dimensional Ising spin glass with long-range
interactions. It is shown that replica symmetry breaking also stops as d -> 6.Comment: Additional text and one figure adde
Non-equilibrium Phase-Ordering with a Global Conservation Law
In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising
model leads to an asymptotic length-scale
at because the kinetic coefficient is renormalized by the broken-bond
density, . For , activated kinetics recovers the
standard asymptotic growth-law, . However, at all temperatures,
infinite-range energy-transport is allowed by the spin-exchange dynamics. A
better implementation of global conservation, the microcanonical Creutz
algorithm, is well behaved and exhibits the standard non-conserved growth law,
, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st
- …