2 research outputs found

    Impact of GAP-43, Cx43 and actin expression on the outcome and overall survival in diffuse and anaplastic gliomas

    No full text
    Abstract Distant intercellular communication in gliomas is based on the expansion of tumor microtubuli, where actin forms cytoskeleton and GAP-43 mediates the axonal conus growth. We aimed to investigate the impact of GAP-43 and actin expression on overall survival (OS) as well as crucial prognostic factors. FFPE tissue of adult patients with diffuse and anaplastic gliomas, who underwent first surgery in our center between 2010 and 2019, were selected. GAP-43, Cx43 and actin expression was analyzed using immunohistochemistry and semi-quantitatively ranked. 118 patients with a median age of 46 years (IqR: 35–57) were evaluated. 48 (41%) presented with a diffuse glioma and 70 (59%) revealed anaplasia. Tumors with higher expression of GAP-43 (p = 0.024, HR = 1.71/rank) and actin (p < 0.001, HR = 2.28/rank) showed significantly reduced OS. IDH1 wildtype glioma demonstrated significantly more expression of all proteins: GAP-43 (p = 0.009), Cx43 (p = 0.003) and actin (p < 0.001). The same was confirmed for anaplasia (GAP-43 p = 0.028, actin p = 0.029), higher proliferation rate (GAP-43 p = 0.016, actin p = 0.038), contrast-enhancement in MRI (GAP-43 p = 0.023, actin p = 0.037) and age (GAP-43 p = 0.004, actin p < 0.001; Cx43 n.s. in all groups). The intercellular distant communication network in diffuse and anaplastic gliomas formed by actin and GAP-43 is associated with a negative impact on overall survival and with unfavorable prognostic features. Cx43 did not show relevant impact on OS

    Development and external validation of a clinical prediction model for functional impairment after intracranial tumor surgery

    Full text link
    OBJECTIVE Decision-making for intracranial tumor surgery requires balancing the oncological benefit against the risk for resection-related impairment. Risk estimates are commonly based on subjective experience and generalized numbers from the literature, but even experienced surgeons overestimate functional outcome after surgery. Today, there is no reliable and objective way to preoperatively predict an individual patient's risk of experiencing any functional impairment. METHODS The authors developed a prediction model for functional impairment at 3 to 6 months after microsurgical resection, defined as a decrease in Karnofsky Performance Status of ≥ 10 points. Two prospective registries in Switzerland and Italy were used for development. External validation was performed in 7 cohorts from Sweden, Norway, Germany, Austria, and the Netherlands. Age, sex, prior surgery, tumor histology and maximum diameter, expected major brain vessel or cranial nerve manipulation, resection in eloquent areas and the posterior fossa, and surgical approach were recorded. Discrimination and calibration metrics were evaluated. RESULTS In the development (2437 patients, 48.2% male; mean age ± SD: 55 ± 15 years) and external validation (2427 patients, 42.4% male; mean age ± SD: 58 ± 13 years) cohorts, functional impairment rates were 21.5% and 28.5%, respectively. In the development cohort, area under the curve (AUC) values of 0.72 (95% CI 0.69-0.74) were observed. In the pooled external validation cohort, the AUC was 0.72 (95% CI 0.69-0.74), confirming generalizability. Calibration plots indicated fair calibration in both cohorts. The tool has been incorporated into a web-based application available at https://neurosurgery.shinyapps.io/impairment/. CONCLUSIONS Functional impairment after intracranial tumor surgery remains extraordinarily difficult to predict, although machine learning can help quantify risk. This externally validated prediction tool can serve as the basis for case-by-case discussions and risk-to-benefit estimation of surgical treatment in the individual patient
    corecore