4 research outputs found

    Layered BiOI single crystals capable of detecting low dose rates of X-rays

    Get PDF
    Detecting low dose rates of X-rays is critical for making safer radiology instruments, but is limited by the absorber materials available. Here, we develop bismuth oxyiodide (BiOI) single crystals into effective X-ray detectors. BiOI features complex lattice dynamics, owing to the ionic character of the lattice and weak van der Waals interactions between layers. Through use of ultrafast spectroscopy, first-principles computations and detailed optical and structural characterisation, we show that photoexcited charge-carriers in BiOI couple to intralayer breathing phonon modes, forming large polarons, thus enabling longer drift lengths for the photoexcited carriers than would be expected if self-trapping occurred. This, combined with the low and stable dark currents and high linear X-ray attenuation coefficients, leads to strong detector performance. High sensitivities reaching 1.1  × 103 μC Gyair−1 cm−2 are achieved, and the lowest dose rate directly measured by the detectors was 22 nGyair s−1. The photophysical principles discussed herein offer new design avenues for novel materials with heavy elements and low-dimensional electronic structures for (opto)electronic applications

    Prediction and realisation of high mobility and degenerate p-type conductivity in CaCuP thin films

    Full text link
    Phosphides are interesting candidates for hole transport materials and p-type transparent conducting applications, capable of achieving greater valence band dispersion than their oxide counterparts due to the higher lying energy and increased size of the P 3p orbital. After computational identification of the indirect-gap semiconductor CaCuP as a promising candidate, we now report reactive sputter deposition of phase-pure p-type CaCuP thin films. Their intrinsic hole concentration and hole mobility exceed 1e20 cm-3 and 35 cm2/Vs at room temperature, respectively. Transport calculations indicate potential for even higher mobilities. Copper vacancies are identified as the main source of conductivity, displaying markedly different behaviour compared to typical p-type transparent conductors, leading to improved electronic properties. The optical transparency of CaCuP films is lower than expected from first principles calculations of phonon-mediated indirect transitions. This discrepancy could be partly attributed to crystalline imperfections within the films, increasing the strength of indirect transitions. We determine the transparent conductor figure of merit of CaCuP films as a function of composition, revealing links between stoichiometry, crystalline quality, and opto-electronic properties. These findings provide a promising initial assessment of the viability of CaCuP as a p-type transparent contact
    corecore