22 research outputs found

    Breast cancer cells treated with proton beam: Immunological features and gene signatures

    Get PDF
    The breast cancer (BC) disease is characterized by a wide heterogeneity at both clinical and molecular level, showing distinct subtypes with different clinical outcomes. Thus, the choice of the therapeutic plan, such as the type of radiotherapy (RT) need to take into account this complexity. Indeed, the proton therapy (PT) shows a medical benefit compared to conventional X-ray RT, as regards the localized delivery of the radiation dose sparing health tissues, but few data regarding proton-induced molecular changes are currently available. The aim of this study was therefore to investigate the production of immunological molecules and gene expression profiles induced by proton irradiation on BC cell lines. Clonogenic survival assay, luminex assay and cDNA microarray gene expression analyses were performed both in the non-tumorigenic MCF10A cell line and in two tumorigenic MCF7 and MDA-MB-231 cell lines, following irradiation with 0.5, 2 and 9 Gy of clinical proton beams. We found that proton irradiation induced gene expression changes useful to define a cell line and dose-dependent gene signatures. The lack of molecular data in the literature can be filled by data here presented that could represent a useful tool to better understand the molecular mechanisms elicited by protons predicting the treatment outcome

    Preliminary study of novel SRC tyrosine kinase inhibitor and proton therapy combined effect on glioblastoma multiforme cell line: In vitro evaluation of target therapy for the enhancement of protons effectiveness

    Get PDF
    The aim of this work was to evaluate proton therapy effectiveness in combination with a molecule SRC protein inhibitor for glioblastoma multiforme treatment. The role of this novel compound, Si306, is to interfere with glioblastoma carcinogenesis and progression, creating a radiosensitivity condition. The experiments were performed on U87 human glioblastoma multiforme cell line. Molecule concentrations of 10 μM and 20μM were tested in combination with proton irradiation doses of 2, 4, 10 and 21Gy. Cell survival evaluation was performed by clonogenic assay. The results showed that Si306 increases the efficacy of proton therapy reducing the surviving cells fraction significantly compared to treatment with protons only. These studies will support the preclinical phase realization, in order to evaluate proton therapy effects and molecularly targeted drug combined treatments

    Proton-irradiated breast cells: molecular points of view

    Get PDF
    Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and describe the production of immunological molecules and gene expression profiles induced by proton irradiation. We performed Luminex assay and cDNA microarray analyses to study the biological processes activated following irradiation with proton beams, both in the non-tumorigenic MCF10A cell line and in two tumorigenic BC cell lines, MCF7 and MDA-MB-231. The immunological signatures were dose dependent in MCF10A and MCF7 cell lines, whereas MDA-MB-231 cells show a strong pro-inflammatory profile regardless of the dose delivered. Clonogenic assay revealed different surviving fractions according to the breast cell lines analyzed. We found the involvement of genes related to cell response to proton irradiation and reported specific cell line- and dose-dependent gene signatures, able to drive cell fate after radiation exposure. Our data could represent a useful tool to better understand the molecular mechanisms elicited by proton irradiation and to predict treatment outcome

    Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy

    Get PDF
    CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) was the first Italian protontherapy facility dedicated to the treatment of ocular neoplastic pathologies. It is in operation at the LNS Laboratories of the Italian Institute for Nuclear Physics (INFN-LNS) and to date, 500 patients have been successfully treated. Even though proton therapy has demonstrated success in clinical settings, there is still a need for more accurate models because they are crucial for the estimation of clinically relevant RBE values. Since RBE can vary depending on several physical and biological parameters, there is a clear need for more experimental data to generate predictions. Establishing a database of cell survival experiments is therefore useful to accurately predict the effects of irradiations on both cancerous and normal tissue. The main aim of this work was to compare RBE values obtained from in-vitro experimental data with predictions made by the LEM II (Local Effect Model), Monte Carlo approaches, and semi-empirical models based on LET experimental measurements. For this purpose, the 92.1 uveal melanoma and ARPE-19 cells derived from normal retinal pigmented epithelium were selected and irradiated in the middle of clinical SOBP of the CATANA proton therapy facility. The remarkable results show the potentiality of using microdosimetric spectrum, Monte Carlo simulations and LEM model to predict not only the RBE but also the survival curves

    Radiation-Induced Gene Expression Changes in High and Low Grade Breast Cancer Cell Types

    No full text
    Background: There is extensive scientific evidence that radiation therapy (RT) is a crucial treatment, either alone or in combination with other treatment modalities, for many types of cancer, including breast cancer (BC). BC is a heterogeneous disease at both clinical and molecular levels, presenting distinct subtypes linked to the hormone receptor (HR) status and associated with different clinical outcomes. The aim of this study was to assess the molecular changes induced by high doses of ionizing radiation (IR) on immortalized and primary BC cell lines grouped according to Human epidermal growth factor receptor (HER2), estrogen, and progesterone receptors, to study how HR status influences the radiation response. Our genomic approach using in vitro and ex-vivo models (e.g., primary cells) is a necessary first step for a translational study to describe the common driven radio-resistance features associated with HR status. This information will eventually allow clinicians to prescribe more personalized total doses or associated targeted therapies for specific tumor subtypes, thus enhancing cancer radio-sensitivity. Methods: Nontumorigenic (MCF10A) and BC (MCF7 and MDA-MB-231) immortalized cell lines, as well as healthy (HMEC) and BC (BCpc7 and BCpcEMT) primary cultures, were divided into low grade, high grade, and healthy groups according to their HR status. At 24 h post-treatment, the gene expression profiles induced by two doses of IR treatment with 9 and 23 Gy were analyzed by cDNA microarray technology to select and compare the differential gene and pathway expressions among the experimental groups. Results: We present a descriptive report of the substantial alterations in gene expression levels and pathways after IR treatment in both immortalized and primary cell cultures. Overall, the IR-induced gene expression profiles and pathways appear to be cell-line dependent. The data suggest that some specific gene and pathway signatures seem to be linked to HR status. Conclusions: Genomic biomarkers and gene-signatures of specific tumor subtypes, selected according to their HR status and molecular features, could facilitate personalized biological-driven RT treatment planning alone and in combination with targeted therapies

    Radiation-Induced Gene Expression Changes in High and Low Grade Breast Cancer Cell Types

    No full text
    Background: There is extensive scientific evidence that radiation therapy (RT) is a crucial treatment, either alone or in combination with other treatment modalities, for many types of cancer, including breast cancer (BC). BC is a heterogeneous disease at both clinical and molecular levels, presenting distinct subtypes linked to the hormone receptor (HR) status and associated with different clinical outcomes. The aim of this study was to assess the molecular changes induced by high doses of ionizing radiation (IR) on immortalized and primary BC cell lines grouped according to Human epidermal growth factor receptor (HER2), estrogen, and progesterone receptors, to study how HR status influences the radiation response. Our genomic approach using in vitro and ex-vivo models (e.g., primary cells) is a necessary first step for a translational study to describe the common driven radio-resistance features associated with HR status. This information will eventually allow clinicians to prescribe more personalized total doses or associated targeted therapies for specific tumor subtypes, thus enhancing cancer radio-sensitivity. Methods: Nontumorigenic (MCF10A) and BC (MCF7 and MDA-MB-231) immortalized cell lines, as well as healthy (HMEC) and BC (BCpc7 and BCpcEMT) primary cultures, were divided into low grade, high grade, and healthy groups according to their HR status. At 24 h post-treatment, the gene expression profiles induced by two doses of IR treatment with 9 and 23 Gy were analyzed by cDNA microarray technology to select and compare the differential gene and pathway expressions among the experimental groups. Results: We present a descriptive report of the substantial alterations in gene expression levels and pathways after IR treatment in both immortalized and primary cell cultures. Overall, the IR-induced gene expression profiles and pathways appear to be cell-line dependent. The data suggest that some specific gene and pathway signatures seem to be linked to HR status. Conclusions: Genomic biomarkers and gene-signatures of specific tumor subtypes, selected according to their HR status and molecular features, could facilitate personalized biological-driven RT treatment planning alone and in combination with targeted therapies

    Glut-3 Gene Knockdown as a Potential Strategy to Overcome Glioblastoma Radioresistance

    No full text
    The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance
    corecore