5 research outputs found

    A high-throughput and sensitive method to measure Global DNA Methylation: Application in Lung Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide changes in DNA methylation are an epigenetic phenomenon that can lead to the development of disease. The study of global DNA methylation utilizes technology that requires both expensive equipment and highly specialized skill sets.</p> <p>Methods</p> <p>We have designed and developed an assay, <it>CpG</it>lobal, which is easy-to-use, does not utilize PCR, radioactivity and expensive equipment. <it>CpG</it>lobal utilizes methyl-sensitive restriction enzymes, HRP Neutravidin to detect the biotinylated nucleotides incorporated in an end-fill reaction and a luminometer to measure the chemiluminescence. The assay shows high accuracy and reproducibility in measuring global DNA methylation. Furthermore, <it>CpG</it>lobal correlates significantly with High Performance Capillary Electrophoresis (HPCE), a gold standard technology. We have applied the technology to understand the role of global DNA methylation in the natural history of lung cancer. World-wide, it is the leading cause of death attributed to any cancer. The survival rate is 15% over 5 years due to the lack of any clinical symptoms until the disease has progressed to a stage where cure is limited.</p> <p>Results</p> <p>Through the use of cell lines and paired normal/tumor samples from patients with non-small cell lung cancer (NSCLC) we show that global DNA hypomethylation is highly associated with the progression of the tumor. In addition, the results provide the first indication that the normal part of the lung from a cancer patient has already experienced a loss of methylation compared to a normal individual.</p> <p>Conclusion</p> <p>By detecting these changes in global DNA methylation, <it>CpG</it>lobal may have a role as a barometer for the onset and development of lung cancer.</p

    Multiplexed VeraCode bead-based serological immunoassay for colorectal cancer

    Get PDF
    AbstractColorectal cancer (CRC) is the second leading cause of cancer deaths in the US and Western world. Despite increased screening and advances in treatment, the mortality rate (ca. 50,000/year) and high national health-care burden for CRC are likely to remain high unless an effective non-invasive screening test for CRC is instituted for a large segment of the population. Blood-based protein biomarkers hold great promise for early disease diagnosis and personalized medicine; yet robust and reproducible multiplexing platforms and methodologies have lagged behind their genomic counterparts.Here, we report the development of a novel, multiplexed, hybrid immunoassay for CRC that is formatted on barcoded VeraCode™ micro-beads, which have until now only been used for genomic assays. The method combines a sandwich immunoassay format for detection of serum protein biomarkers with an antigen assay for autoantibody detection. The serum protein biomarkers CEA and GDF15 as well as autoantibodies to the p53 tumor associated antigen (TAA) were used to exemplify the method. This multiplex biomarker panel was configured to run on Illumina's holographically barcoded VeraCode™ micro-bead platform, which is capable of measuring hundreds of analytes simultaneously in a single well from small volumes of blood (<50μL) using a 96-well industry standard microtiter plate. This novel use of the VeraCode™ micro-bead platform translates into a potentially low volume, high throughput, multiplexed assay for CRC, for the purposes of biomarker validation, as well as patient screening, diagnostics and prognostics. In an evaluation of a 186 patient sera training set (CRC and normal), we obtained a diagnostic sensitivity of 54% and a specificity of 98%. We anticipate that by expanding and refining the biomarkers in this initial panel, and performing more extensive clinical validations, such an assay could ultimately provide a basis for CRC population screening to complement the more invasive, expensive and low throughput (but highly sensitive and specific) colonoscopy

    A Mutation in the LDL Receptor–Related Protein 5 Gene Results in the Autosomal Dominant High–Bone-Mass Trait

    Get PDF
    Osteoporosis is a complex disease that affects >10 million people in the United States and results in 1.5 million fractures annually. In addition, the high prevalence of osteopenia (low bone mass) in the general population places a large number of people at risk for developing the disease. In an effort to identify genetic factors influencing bone density, we characterized a family that includes individuals who possess exceptionally dense bones but are otherwise phenotypically normal. This high–bone-mass trait (HBM) was originally localized by linkage analysis to chromosome 11q12-13. We refined the interval by extending the pedigree and genotyping additional markers. A systematic search for mutations that segregated with the HBM phenotype uncovered an amino acid change, in a predicted β-propeller module of the low-density lipoprotein receptor–related protein 5 (LRP5), that results in the HBM phenotype. During analysis of >1,000 individuals, this mutation was observed only in affected individuals from the HBM kindred. By use of in situ hybridization to rat tibia, expression of LRP5 was detected in areas of bone involved in remodeling. Our findings suggest that the HBM mutation confers a unique osteogenic activity in bone remodeling, and this understanding may facilitate the development of novel therapies for the treatment of osteoporosis

    Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness

    No full text
    Asthma is a common respiratory disorder characterized by recurrent episodes of coughing, wheezing and breathlessness. Although environmental factors such as allergen exposure are risk factors in the development of asthma, both twin and family studies point to a strong genetic component. To date, linkage studies have identified more than a dozen genomic regions linked to asthma. In this study, we performed a genome-wide scan on 460 Caucasian families and identified a locus on chromosome 20p13 that was linked to asthma (log10 of the likelihood ratio (LOD), 2.94) and bronchial hyperresponsiveness (LOD, 3.93). A survey of 135 polymorphisms in 23 genes identified the ADAM33 gene as being significantly associated with asthma using case-control, transmission disequilibrium and haplotype analyses (P = 0.04?0.000003). ADAM proteins are membrane-anchored metalloproteases with diverse functions, which include the shedding of cell-surface proteins such as cytokines and cytokine receptors. The identification and characterization of ADAM33, a putative asthma susceptibility gene identified by positional cloning in an outbred population, should provide insights into the pathogenesis and natural history of this common disease
    corecore