45 research outputs found

    Analysis of the Ribonuclease a superfamily of antimicrobial peptides in patients undergoing chronic peritoneal dialysis

    Get PDF
    Infectious peritonitis is a common complication in patients undergoing chronic peritoneal dialysis (PD), limiting the duration of PD as a modality for renal replacement therapy and increasing patient morbidity and mortality. Antimicrobial peptides (AMPs) serve critical roles in mucosal defense, but their expression and activity during peritonitis are poorly understood. We hypothesized that AMPs belonging to the Ribonuclease (RNase) A Superfamily are present in peritoneal fluid and increase during peritonitis in patients undergoing chronic PD. In the absence of peritonitis, we detected RNase 3, RNase 6, and RNase 7 in cell-free supernatants and viable cells obtained from peritoneal fluid of chronic PD patients. The cellular sources of these RNases were eosinophils (RNase 3), macrophages (RNase 6), and mesothelial cells (RNase 7). During peritonitis, RNase 3 increased 55-fold and RNase 7 levels increased 3-fold on average, whereas RNase 6 levels were unchanged. The areas under the receiver-operating characteristic curves for RNase 3 and RNase 7 were 0.99 (95% confidence interval (CI): 0.96–1.0) and 0.79 (95% CI: 0.64–0.93), respectively, indicating their potential as biomarkers of peritonitis. Discrete omental reservoirs of these RNases were evident in patients with end stage kidney disease prior to PD initiation, and omental RNase 3 reactive cells increased in patients undergoing PD with a history of peritonitis. We propose that constitutive and inducible pools of antimicrobial RNases form a network to shield the peritoneal cavity from microbial invasion in patients undergoing chronic PD

    Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships

    Get PDF
    Aim: Understanding the spatial distribution of high priority habitats and developing predictive models using climate and environmental variables to replicate these distributions are desirable conservation goals. The aim of this study was to model and elucidate the contributions of climate and topography to the distribution of a priority blanket bog habitat in Ireland, and to examine how this might inform the development of a climate change predictive capacity for peat-lands in Ireland. Methods: Ten climatic and two topographic variables were recorded for grid cells with a spatial resolution of 1010 km, covering 87% of the mainland land surface of Ireland. Presence-absence data were matched to these variables and generalised linear models (GLMs) fitted to identify the main climatic and terrain predictor variables for occurrence of the habitat. Candidate predictor variables were screened for collinearity, and the accuracy of the final fitted GLM was evaluated using fourfold cross-validation based on the area under the curve (AUC) derived from a receiver operating characteristic (ROC) plot. The GLM predicted habitat occurrence probability maps were mapped against the actual distributions using GIS techniques. Results: Despite the apparent parsimony of the initial GLM using only climatic variables, further testing indicated collinearity among temperature and precipitation variables for example. Subsequent elimination of the collinear variables and inclusion of elevation data produced an excellent performance based on the AUC scores of the final GLM. Mean annual temperature and total mean annual precipitation in combination with elevation range were the most powerful explanatory variable group among those explored for the presence of blanket bog habitat. Main conclusions: The results confirm that this habitat distribution in general can be modelled well using the non-collinear climatic and terrain variables tested at the grid resolution used. Mapping the GLM-predicted distribution to the observed distribution produced useful results in replicating the projected occurrence of the habitat distribution over an extensive area. The methods developed will usefully inform future climate change predictive modelling for Irelan
    corecore