1,264 research outputs found

    Universality of Decoherence

    Full text link
    We consider environment induced decoherence of quantum superpositions to mixtures in the limit in which that process is much faster than any competing one generated by the Hamiltonian HsysH_{\rm sys} of the isolated system. While the golden rule then does not apply we can discard HsysH_{\rm sys}. By allowing for simultaneous couplings to different reservoirs, we reveal decoherence as a universal short-time phenomenon independent of the character of the system as well as the bath and of the basis the superimposed states are taken from. We discuss consequences for the classical behavior of the macroworld and quantum measurement: For the decoherence of superpositions of macroscopically distinct states the system Hamiltonian is always negligible.Comment: 4 revtex pages, no figure

    On determination of statistical properties of spectra from parametric level dynamics

    Full text link
    We analyze an approach aiming at determining statistical properties of spectra of time-periodic quantum chaotic system based on the parameter dynamics of their quasienergies. In particular we show that application of the methods of statistical physics, proposed previously in the literature, taking into account appropriate integrals of motion of the parametric dynamics is fully justified, even if the used integrals of motion do not determine the invariant manifold in a unique way. The indetermination of the manifold is removed by applying Dirac's theory of constrained Hamiltonian systems and imposing appropriate primary, first-class constraints and a gauge transformation generated by them in the standard way. The obtained results close the gap in the whole reasoning aiming at understanding statistical properties of spectra in terms of parametric dynamics.Comment: 9 pages without figure

    Periodic-Orbit Theory of Universality in Quantum Chaos

    Full text link
    We argue semiclassically, on the basis of Gutzwiller's periodic-orbit theory, that full classical chaos is paralleled by quantum energy spectra with universal spectral statistics, in agreement with random-matrix theory. For dynamics from all three Wigner-Dyson symmetry classes, we calculate the small-time spectral form factor K(τ)K(\tau) as power series in the time τ\tau. Each term τn\tau^n of that series is provided by specific families of pairs of periodic orbits. The contributing pairs are classified in terms of close self-encounters in phase space. The frequency of occurrence of self-encounters is calculated by invoking ergodicity. Combinatorial rules for building pairs involve non-trivial properties of permutations. We show our series to be equivalent to perturbative implementations of the non-linear sigma models for the Wigner-Dyson ensembles of random matrices and for disordered systems; our families of orbit pairs are one-to-one with Feynman diagrams known from the sigma model.Comment: 31 pages, 17 figure

    Chaotic maps and flows: Exact Riemann-Siegel lookalike for spectral fluctuations

    Full text link
    To treat the spectral statistics of quantum maps and flows that are fully chaotic classically, we use the rigorous Riemann-Siegel lookalike available for the spectral determinant of unitary time evolution operators FF. Concentrating on dynamics without time reversal invariance we get the exact two-point correlator of the spectral density for finite dimension NN of the matrix representative of FF, as phenomenologically given by random matrix theory. In the limit NN\to\infty the correlator of the Gaussian unitary ensemble is recovered. Previously conjectured cancellations of contributions of pseudo-orbits with periods beyond half the Heisenberg time are shown to be implied by the Riemann-Siegel lookalike

    Periodic-orbit theory of universal level correlations in quantum chaos

    Full text link
    Using Gutzwiller's semiclassical periodic-orbit theory we demonstrate universal behaviour of the two-point correlator of the density of levels for quantum systems whose classical limit is fully chaotic. We go beyond previous work in establishing the full correlator such that its Fourier transform, the spectral form factor, is determined for all times, below and above the Heisenberg time. We cover dynamics with and without time reversal invariance (from the orthogonal and unitary symmetry classes). A key step in our reasoning is to sum the periodic-orbit expansion in terms of a matrix integral, like the one known from the sigma model of random-matrix theory.Comment: 44 pages, 11 figures, changed title; final version published in New J. Phys. + additional appendices B-F not included in the journal versio

    Semiclassical expansion of parametric correlation functions of the quantum time delay

    Full text link
    We derive semiclassical periodic orbit expansions for a correlation function of the Wigner time delay. We consider the Fourier transform of the two-point correlation function, the form factor K(τ,x,y,M)K(\tau,x,y,M), that depends on the number of open channels MM, a non-symmetry breaking parameter xx, and a symmetry breaking parameter yy. Several terms in the Taylor expansion about τ=0\tau=0, which depend on all parameters, are shown to be identical to those obtained from Random Matrix Theory.Comment: 21 pages, no figure

    Semiclassical universality of parametric spectral correlations

    Full text link
    We consider quantum systems with a chaotic classical limit that depend on an external parameter, and study correlations between the spectra at different parameter values. In particular, we consider the parametric spectral form factor K(τ,x)K(\tau,x) which depends on a scaled parameter difference xx. For parameter variations that do not change the symmetry of the system we show by using semiclassical periodic orbit expansions that the small τ\tau expansion of the form factor agrees with Random Matrix Theory for systems with and without time reversal symmetry.Comment: 18 pages, no figure

    Beyond the Heisenberg time: Semiclassical treatment of spectral correlations in chaotic systems with spin 1/2

    Full text link
    The two-point correlation function of chaotic systems with spin 1/2 is evaluated using periodic orbits. The spectral form factor for all times thus becomes accessible. Equivalence with the predictions of random matrix theory for the Gaussian symplectic ensemble is demonstrated. A duality between the underlying generating functions of the orthogonal and symplectic symmetry classes is semiclassically established

    Decoherence scenarios from micro- to macroscopic superpositions

    Full text link
    Environment induced decoherence entails the absence of quantum interference phenomena from the macroworld. The loss of coherence between superposed wave packets depends on their separation. The precise temporal course depends on the relative size of the time scales for decoherence and other processes taking place in the open system and its environment. We use the exactly solvable model of an harmonic oscillator coupled to a bath of oscillators to illustrate various decoherence scenarios: These range from exponential golden-rule decay for microscopic superpositions, system-specific decay for larger separations in a crossover regime, and finally universal interaction-dominated decoherence for ever more macroscopic superpositions.Comment: 11 pages, 7 figures, accompanying paper to quant-ph/020412
    corecore