32,509 research outputs found

    The B-L/Electroweak Hierarchy in Smooth Heterotic Compactifications

    Full text link
    E8 X E8 heterotic string and M-theory, when appropriately compactified, can give rise to realistic, N=1 supersymmetric particle physics. In particular, the exact matter spectrum of the MSSM, including three right-handed neutrino supermultiplets, one per family, and one pair of Higgs-Higgs conjugate superfields is obtained by compactifying on Calabi-Yau manifolds admitting specific SU(4) vector bundles. These "heterotic standard models" have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge group of the standard model augmented by an additional gauged U(1)_{B-L}. Their minimal content requires that the B-L gauge symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. In a previous paper, we presented the results of a renormalization group analysis showing that B-L gauge symmetry is indeed radiatively broken with a B-L/electroweak hierarchy of O(10) to O(10^{2}). In this paper, we present the details of that analysis, extending the results to include higher order terms in tan[beta]^{-1} and the explicit spectrum of all squarks and sleptons.Comment: 60 pages, 6 figure

    The Exact MSSM Spectrum from String Theory

    Get PDF
    We show the existence of realistic vacua in string theory whose observable sector has exactly the matter content of the MSSM. This is achieved by compactifying the E_8 x E_8 heterotic superstring on a smooth Calabi-Yau threefold with an SU(4) gauge instanton and a Z_3 x Z_3 Wilson line. Specifically, the observable sector is N=1 supersymmetric with gauge group SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}, three families of quarks and leptons, each family with a right-handed neutrino, and one Higgs-Higgs conjugate pair. Importantly, there are no extra vector-like pairs and no exotic matter in the zero mode spectrum. There are, in addition, 6 geometric moduli and 13 gauge instanton moduli in the observable sector. The holomorphic SU(4) vector bundle of the observable sector is slope-stable.Comment: 15 pages, LaTeX; v2: Hidden sector is unstable, symbol typesetting error corrected, clarifications and references added; v3: New discussion of hidden secto

    Yukawa Couplings in Heterotic Standard Models

    Get PDF
    In this paper, we present a formalism for computing the Yukawa couplings in heterotic standard models. This is accomplished by calculating the relevant triple products of cohomology groups, leading to terms proportional to Q*H*u, Q*Hbar*d, L*H*nu and L*Hbar*e in the low energy superpotential. These interactions are subject to two very restrictive selection rules arising from the geometry of the Calabi-Yau manifold. We apply our formalism to the "minimal" heterotic standard model whose observable sector matter spectrum is exactly that of the MSSM. The non-vanishing Yukawa interactions are explicitly computed in this context. These interactions exhibit a texture rendering one out of the three quark/lepton families naturally light.Comment: 21 pages, LaTe

    Stability of the Minimal Heterotic Standard Model Bundle

    Get PDF
    The observable sector of the "minimal heterotic standard model" has precisely the matter spectrum of the MSSM: three families of quarks and leptons, each with a right-handed neutrino, and one Higgs-Higgs conjugate pair. In this paper, it is explicitly proven that the SU(4) holomorphic vector bundle leading to the MSSM spectrum in the observable sector is slope-stable.Comment: LaTeX, 19 page

    Fluctuations of the number of participants and binary collisions in AA interactions at fixed centrality in the Glauber approach

    Full text link
    In the framework of the classical Glauber approach, the analytical expressions for the variance of the number of wounded nucleons and binary collisions in AA interactions at a given centrality are presented. Along with the optical approximation term, they contain additional contact terms arising only in the case of nucleus-nucleus collisions. The magnitude of the additional contributions, e.g., for PbPb collisions at SPS energies, is larger than the contribution of the optical approximation at some values of the impact parameter. The sum of the additional contributions is in good agreement with the results of independent Monte Carlo simulations of this process. Due to these additional terms, the variance of the total number of participants for peripheral PbPb collisions and the variance of the number of collisions at all values of the impact parameter exceed several multiples of the Poisson variances. The correlator between the numbers of participants in colliding nuclei at fixed centrality is also analytically calculated.Comment: updated version; as published by Phys. Rev.

    The electron spectra in the synchrotron nebula of the supernova remnant G 29.7-0.3

    Get PDF
    EXOSAT results obtained with the imaging instrument (CMA) and the medium energy proportional counters (ME) are discussed. Assuming that the featureless power-law spectrum obtained in the 2 to 10 keV range is synchrotron radiation from relativistic electrons, one derives constraints on magnetic field strength and age of the nebula. The energy spectra of the electrons responsible for the emission in the radio and X-ray ranges are discussed. The great similarity of the physical properties of G 29.7-0.3 and of three synchrotron nebulae containing a compact object observed to pulse in X-rays makes G 29.7 - 0.3 a very promising candidate for further search for pulsed emission. Further observations at infrared wavelengths might reveal the break(s) in the emitted spectrum expected from the radio and X-ray power-law indices and give us more information on the production of the electron populations responsible for the emission of the nebula

    Hadron-nucleus scattering in the local reggeon model with pomeron loops for realistic nuclei

    Full text link
    Contribution of simplest loops for hadron-nucleus scattering cross-sections is studied in the Local Reggeon Field Theory with a supercritical pomeron. It is shown that inside the nucleus the supercritical pomeron transforms into a subcritical one, so that perturbative treatment becomes possible. The pomeron intercept becomes complex, which leads to oscillations in the cross-sections.Comment: 13 pages, 6 figure

    Superconductivity in iron silicide Lu2Fe3Si5 probed by radiation-induced disordering

    Full text link
    Resistivity r(T), Hall coefficient RH(T), superconducting temperature Tc, and the slope of the upper critical field -dHc2/dT were studied in poly- and single-crystalline samples of the Fe-based superconductor Lu2Fe3Si5 irradiated by fast neutrons. Atomic disordering induced by the neutron irradiation leads to a fast suppression of Tc similarly to the case of doping of Lu2Fe3Si5 with magnetic (Dy) and non-magnetic (Sc, Y) impurities. The same effect was observed in a novel FeAs-based superconductor La(O-F)FeAs after irradiation. Such behavior is accounted for by strong pair breaking that is traceable to scattering at non-magnetic impurities or radiation defects in unconventional superconductors. In such superconductors the sign of the order parameter changes between the different Fermi sheets (s+- model). Some relations that are specified for the properties of the normal and superconducting states in high-temperature superconductors are also observed in Lu2Fe3Si5. The first is the relationship -dHc2/dT ~ Tc, instead of the one expected for dirty superconductors -dHc2/dT ~ r0. The second is a correlation between the low-temperature linear coefficient a in the resistivity r = r0 + a1T, which appears presumably due to the scattering at magnetic fluctuations, and Tc; this correlation being an evidence of a tight relation between the superconductivity and magnetism. The data point to an unconventional (non-fononic) mechanism of superconductivity in Lu2Fe3Si5, and, probably, in some other Fe-based compounds, which can be fruitfully studied via the radiation-induced disordering.Comment: 7 pages, 8 figure

    Moduli Dependent mu-Terms in a Heterotic Standard Model

    Get PDF
    In this paper, we present a formalism for computing the non-vanishing Higgs mu-terms in a heterotic standard model. This is accomplished by calculating the cubic product of the cohomology groups associated with the vector bundle moduli (phi), Higgs (H) and Higgs conjugate (Hbar) superfields. This leads to terms proportional to phi H Hbar in the low energy superpotential which, for non-zero moduli expectation values, generate moduli dependent mu-terms of the form H Hbar. It is found that these interactions are subject to two very restrictive selection rules, each arising from a Leray spectral sequence, which greatly reduce the number of moduli that can couple to Higgs-Higgs conjugate fields. We apply our formalism to a specific heterotic standard model vacuum. The non-vanishing cubic interactions phi H Hbar are explicitly computed in this context and shown to contain only four of the nineteen vector bundle moduli.Comment: 23 pages, LaTe
    • …
    corecore