32 research outputs found
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia
Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Blood lactate is a predictor of short-term mortality in patients with myocardial infarction complicated by heart failure but without cardiogenic shock
Background: Mortality in patients with acute myocardial infarction (AMI) has improved substantially with modern therapy including percutaneous coronary interventions (PCI) but remains high in certain subgroups such as patients presenting with overt cardiogenic shock. However, the risk for AMI in patients presenting acutely with signs of heart failure but without cardiogenic shock is less well described. We aimed to identify risk factors for mortality in AMI patients with heart failure without overt cardiogenic shock. Methods: Using data from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR), we identified patients with operator-registered heart failure (Killip class II-IV), and evaluated predictors of mortality based on clinical factors from review of patient records. Results: A total of 1260 unique patients with acute myocardial infarction underwent PCI in 2014, of which 77 patients (7%) showed signs of heart failure (Killip II-IV) Overall 30-day mortality in patients with Killip class II-IV was 20% (N = 15). In patients classified Killip IV (1%), 30-day mortality was 50% (N = 6). In patients presenting with mild to moderate heart failure (Killlip class II-III), 30-day mortality was 14% (N = 9). In patients with Killip class II-III, lactate ≥2.5 mmol/L was associated with 30-day mortality, whereas systolic blood pressure < 90 mmHg, age, sex and BMI were not. In patients with lactate < 2.5 mmol/L 30-day mortality was 5% (N = 2) whereas mortality was 28% (N = 7) with lactate ≥2.5 mmol/L. This cut-off provided discriminative information on 30-day mortality (area under ROC curve 0.74). Conclusions: In patients with AMI and signs of mild to moderate heart failure, lactate ≥2.5 mmol/L provides additional prognostic information. Interventions to reduce risk may be targeted to these patients