25,567 research outputs found
Cooperative spontaneous emission from indistinguishable atoms in arbitrary motional quantum states
We investigate superradiance and subradiance of indistinguishable atoms with
quantized motional states, starting with an initial total state that factorizes
over the internal and external degrees of freedom of the atoms. Due to the
permutational symmetry of the motional state, the cooperative spontaneous
emission, governed by a recently derived master equation [F. Damanet et al.,
Phys. Rev. A 93, 022124 (2016)], depends only on two decay rates and
and a single parameter describing the
dipole-dipole shifts. We solve the dynamics exactly for atoms,
numerically for up to 30 atoms, and obtain the large--limit by amean-field
approach. We find that there is a critical difference that
depends on beyond which superradiance is lost. We show that exact
non-trivial dark states (i.e. states other than the ground state with vanishing
spontaneous emission) only exist for , and that those states
(dark when ) are subradiant when .Comment: 14 pages, 8 figure
Exact Study of the Effect of Level Statistics in Ultrasmall Superconducting Grains
The reduced BCS model that is commonly used for ultrasmall superconducting
grains has an exact solution worked out long ago by Richardson in the context
of nuclear physics. We use it to check the quality of previous treatments of
this model, and to investigate the effect of level statistics on pairing
correlations. We find that the ground state energies are on average somewhat
lower for systems with non-uniform than uniform level spacings, but both have
an equally smooth crossover from the bulk to the few-electron regime. In the
latter, statistical fluctuations in ground state energies strongly depend on
the grain's electron number parity.Comment: 4 pages, 3 eps figs, RevTe
Modeling the Void H I Column Density Spectrum
The equivalent width distribution function (EWDF) of \hone absorbers specific
to the void environment has been recently derived (Manning 2002), revealing a
large line density of clouds (dN/dz ~500 per unit z for Log (N_HI)> 12.4). I
show that the void absorbers cannot be diffuse (or so-called filamentary)
clouds, expanding with the Hubble flow, as suggested by N-body/hydro
simulations. Absorbers are here modeled as the baryonic remnants of
sub-galactic perturbations that have expanded away from their dark halos in
response to reionization at z ~ 6.5. A 1-D Lagrangian hydro/gravity code is
used to follow the dynamic evolution and ionization structure of the baryonic
clouds for a range of halo circular velocities. The simulation products at z=0
can be combined according to various models of the halo velocity distribution
function to form a column density spectrum that can be compared with the
observed. I find that such clouds may explain the observed EWDF if the halo
velocity distribution function is as steep as that advanced by Klypin (1999),
and the halo mass distribution is closer to isothermal than to NFW.Comment: 21 pages, 15 figures. Paper in press; ApJ 591, n
Unified Description of Freeze-Out Parameters in Relativistic Heavy Ion Collisions
It is shown that the chemical freeze-out parameters obtained at CERN/SPS,
BNL/AGS and GSI/SIS energies all correspond to a unique value of 1 GeV per
hadron in the local rest frame of the system, independent of the beam energy
and of the target and beam particles.Comment: revtex, 1 figur
Heavy quark(onium) at LHC: the statistical hadronization case
We discuss the production of charmonium in nuclear collisions within the
framework of the statistical hadronization model. We demonstrate that the model
reproduces very well the availble data at RHIC. We provide predictions for the
LHC energy where, dependently on the charm production cross section, a
dramatically different behaviour of charmonium production as a function of
centrality might be expected. We discuss also the case in elementary
collisions, where clearly the statistical model does not reproduce the
measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be
published in J. Phys.
Transverse momentum distributions and their forward- backward correlations in the percolating colour string approach
The forward-backward correlations in the distributions, which present a
clear signature of non-linear effects in particle production, are studied in
the model of percolating colour strings. Quantitative predictions are given for
these correlations at SPS, RHIC and LHC energies. Interaction of strings also
naturally explains the flattening of distributions and increase of
with energy and atomic number for nuclear collisionsComment: 6 pages in LaTex, 3 figures in Postscrip
On the relation of quark confinement and chiral symmetry breaking
We study the phase diagram of QCD with the help of order parameters for
chiral symmetry breaking and quark confinement. We also introduce a new order
parameter for the confinement phase transition, which is related to the quark
density. It is easily accessible by different theoretical approaches, such as
functional approaches or lattice simulations. Its relation to the Polyakov loop
expectation value is discussed and the QCD phase diagram is analysed. Our
results suggest a close relation between the chiral and the confinement phase
transition.Comment: 5 pages, 3 figure
Dynamical phase diagram of the dc-driven underdamped Frenkel-Kontorova chain
Multistep dynamical phase transition from the locked to the running state of
atoms in response to a dc external force is studied by MD simulations of the
generalized Frenkel-Kontorova model in the underdamped limit. We show that the
hierarchy of transition recently reported [Braun et al, Phys. Rev. Lett. 78,
1295 (1997)] strongly depends on the value of the friction constant. A simple
phenomenological explanation for the friction dependence of the various
critical forces separating intermediate regimes is given.Comment: 12 Revtex Pages, 4 EPS figure
- …