7,274 research outputs found

    One-dimensional hydrogen atom with minimal length uncertainty and maximal momentum

    Full text link
    We present exact energy eigenvalues and eigenfunctions of the one-dimensional hydrogen atom in the framework of the Generalized (Gravitational) Uncertainty Principle (GUP). This form of GUP is consistent with various theories of quantum gravity such as string theory, loop quantum gravity, black-hole physics, and doubly special relativity and implies a minimal length uncertainty and a maximal momentum. We show that the quantized energy spectrum exactly agrees with the semiclassical results.Comment: 10 pages, 1 figur

    Bohr-Sommerfeld quantization and meson spectroscopy

    Full text link
    We use the Bohr-Sommerfeld quantization approach in the context of constituent quark models. This method provides, for the Cornell potential, analytical formulae for the energy spectra which closely approximate numerical exact calculations performed with the Schrodinger or the spinless Salpeter equations. The Bohr-Sommerfeld quantization procedure can also be used to calculate other observables such as r.m.s. radius or wave function at the origin. Asymptotic dependence of these observables on quantum numbers are also obtained in the case of potentials which behave asymptotically as a power-law. We discuss the constraints imposed by these formulae on the dynamics of the quark-antiquark interaction.Comment: 13 page

    Harmonic oscillator with minimal length uncertainty relations and ladder operators

    Get PDF
    We construct creation and annihilation operators for harmonic oscillators with minimal length uncertainty relations. We discuss a possible generalization to a large class of deformations of cannonical commutation relations. We also discuss dynamical symmetry of noncommutative harmonic oscillator.Comment: 8 pages, revtex4, final version, to appear in PR

    Baryon spectra with instanton induced forces

    Full text link
    Except the vibrational excitations of KK and K∗K^* mesons, the main features of spectra of mesons composed of quarks uu, dd, and ss can be quite well described by a semirelativistic potential model including instanton induced forces. The spectra of baryons composed of the same quarks is studied using the same model. The results and the limitations of this approach are described. Some possible improvements are suggested.Comment: 5 figure

    A unified meson-baryon potential

    Full text link
    We study the spectra of mesons and baryons, composed of light quarks, in the framework of a semirelativistic potential model including instanton induced forces. We show how a simple modification of the instanton interaction in the baryon sector allows a good description of the meson and the baryon spectra using an interaction characterized by a unique set of parameters.Comment: 7 figure
    • 

    corecore