36 research outputs found

    Glial Neuronal Ratio: A Novel Index for Differentiating Injury Type in Patients with Severe Traumatic Brain Injury

    No full text
    Neurobiochemical marker levels in blood after traumatic brain injury (TBI) may reflect structural changes detected by neuroimaging. This study evaluates whether correlations between neuronal (ubiquitin carboxy-terminal hydrolase-L1 [UCH-L1]) and glial (glial fibrillary acidic protein [GFAP]) biomarkers may be used as an indicator for differing intracranial pathologies after brain trauma. In 59 patients with severe TBI (Glasgow Coma Scale [GCS] score≤8) serum samples were obtained at the time of hospital admission and analyzed for UCH-L1 and GFAP. Glial neuronal ratio (GNR) was evaluated as the ratio between GFAP and UCH-L1 concentrations. A logistic regression analysis was used to identify variables associated with type of injury. GNR had a median of 0.85 and was positively correlated with age (R=0.45, p=0.003). Twenty-nine patients presented with diffuse injury and 30 with focal mass lesions as assessed by CT scan at admission and classified according to the Marshall Classification. GNR was significantly higher in the focal mass lesion group compared with the diffuse injury group (1.77 versus 0.48, respectively; p=0.003). Receiver operating characteristic curve analysis showed that GNR discriminated between types of injury (area under the curve [AUC]=0.72; p=0.003). GNR was more accurate earlier (≤12 h after injury) than later (AUC=0.80; p=0.002). Increased GNR was independently associated with type of injury, but not age, gender, GCS score, or mechanism of injury. GNR was significantly higher in patients who died, but was not an independent predictor of death. The data from the present study indicate that GNR provides valuable information about different injury pathways, which may be of diagnostic significance. In addition, GNR may help to identify different pathophysiological mechanisms following different types of brain trauma, with implications for therapeutic interventions

    How to manage refractory intracranial hypertension?

    Full text link
    Intracranial hypertension is one of the major causes of secondary injury in traumatic brain injury leading to a significant burden of morbidity and mortality. We here present a review of available therapies for the treatment of refractory intracranial hypertension that is defined as an intracranial hypertension that does not respond to the firstline therapies. Second-line therapies that are available for the treatment of refractory intracranial hypertension include mild induced hypothermia, inotropes, and vasopressors for the control of cerebral perfusion pressure, transient hyperventilation, barbiturates, and decompressive craniectomy. Apart from decompressive craniectomy, these therapies are supported by the last guidelines published by the Brain Trauma Foundation (BTF). However, the level of evidence supporting them is low to moderate. This is probably partly explained by the fact that traumatic brain injury is extremely heterogeneous and requires multimodal and individualised care, which makes randomised clinical trials difficult to set up. On-going studies like those conducted on induced hypothermia (EUROTHERM3235) and on decompressive craniectomy (RESCUEicp) may lead to new perspectives for the management of patients suffering from refractory intracranial hypertension
    corecore