311 research outputs found

    Strengthening the Synapse between Outpatient Neurological Care and Inpatient Referral

    Get PDF
    Objective The goal of this project is to investigate if established neurology patients are appropriately referred to the emergency room. We suspect that there are patients that could be more effectively triaged to prevent unnecessary visits to the emergency department. If this is the case, implementing an intervention such as offering expedited visits or contingency plan, may reduce non-emergent inpatient consultative services5. This would also improve outpatient communication and decrease utilization of both ER and patient resources

    Infrared spectroscopy of phytochrome and model pigments

    Get PDF
    Fourier-transform infrared difference spectra between the red-absorbing and far-red-absorbing forms of oat phytochrome have been measured in H2O and 2H2O. The difference spectra are compared with infrared spectra of model compounds, i.e. the (5Z,10Z,15Z)- and (5Z,10Z,15E)-isomers of 2,3,7,8,12,13,17,18-octaethyl-bilindion (Et8-bilindion), 2,3-dihydro-2,3,7,8,12,13,17,18-octaethyl-bilindion (H2Et8-bilindion), and protonated H2Et8-bilindion in various solvents. The spectra of the model compounds show that only for the protonated forms can clear differences between the two isomers be detected. Since considerable differences are present between the spectra of Et8-bilindion and H2Et8-bilindion, it is concluded that only the latter compound can serve as a model system of phytochrome. The 2H2O effect on the difference spectrum of phytochrome supports the view that the chromophore in red-absorbing phytochrome is protonated and suggests, in addition, that it is also protonated in far-red-absorbing phytochrome. The spectra show that protonated carboxyl groups are influenced. The small amplitudes in the difference spectra exclude major changes of protein secondary structure

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    International Consensus Guideline on Small for Gestational Age (SGA): Etiology and Management from Infancy to Early Adulthood

    Get PDF
    : This International Consensus Guideline was developed by experts in the field of SGA of 10 pediatric endocrine societies worldwide. A consensus meeting was held and 1300 articles formed the basis for discussions. All experts voted about the strengths of the recommendations. The guideline gives new and clinically relevant insights into the etiology of short stature after SGA birth, including novel knowledge about (epi)genetic causes. Besides, it presents long-term consequences of SGA birth and new treatment options, including treatment with gonadotropin-releasing hormone agonist (GnRHa) in addition to growth hormone (GH) treatment, and the metabolic and cardiovascular health of young adults born SGA after cessation of childhood-GH-treatment in comparison with appropriate control groups. To diagnose SGA, accurate anthropometry and use of national growth charts are recommended. Follow-up in early life is warranted and neurodevelopment evaluation in those at risk. Excessive postnatal weight gain should be avoided, as this is associated with an unfavorable cardio-metabolic health profile in adulthood. Children born SGA with persistent short stature < -2.5 SDS at age 2 years or < -2 SDS at age of 3-4 years, should be referred for diagnostic work-up. In case of dysmorphic features, major malformations, microcephaly, developmental delay, intellectual disability and/or signs of skeletal dysplasia, genetic testing should be considered. Treatment with 0.033-0.067 mg GH/kg/day is recommended in case of persistent short stature at age of 3-4 years. Adding GnRHa treatment could be considered when short adult height is expected at pubertal onset. All young adults born SGA require counseling to adopt a healthy lifestyle

    Photochemistry and photophysics of thienocarbazoles

    Get PDF
    Two methylated thienocarbazoles and two of their synthetic nitro-precursors have been examined by absorption, luminescence, laser flash photolysis and photoacoustic techniques. Their spectroscopic and photophysical characterization involves fluorescence spectra, fluorescence quantum yields and lifetimes, and phosphorescence spectra and phosphorescence lifetimes for all the compounds. Triplet-singlet difference absorption spectra, triplet molar absorption coefficients, triplet lifetimes, intersystem crossing S-1 similar tosimilar to--> T-1 and singlet molecular oxygen yields were obtained for the thienocarbazoles. In the case of the thienocarbazoles it was found that the lowest-lying singlet and triplet excited states, S, and T-1, are of pi,pi* origin, whereas for their precursors S-1 is n,pi*, and T-1 is pi,pi*. In both thienocarbazoles it appears that the thianaphthene ring dictates the S, T, yield, albeit there is less predominance of that ring in the triplet state of the linear thienocarbazole, which leads to a decrease in the observed Phi(T) value.info:eu-repo/semantics/publishedVersio

    A retrospective analysis of endocrine disease in sphingosine-1-phosphate lyase insufficiency: case series and literature review

    Get PDF
    Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is an autosomal recessive multi-system disorder, which mainly incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency. Other variable endocrine manifestations are described. In this study, we aimed to comprehensively annotate the endocrinopathies associated with pathogenic SGPL1 variants and assess for genotype–phenotype correlations by retrospectively reviewing the reports of endocrine disease within our patient cohort and all published cases in the wider literature up to February 2022. Glucocorticoid insufficiency in early childhood is the most common endocrine manifestation affecting 64% of the 50 patients reported with SPLIS, and a third of these individuals have additional mineralocorticoid deficiency. While most individuals also have nephrotic syndrome, SGPL1 variants also account for isolated adrenal insufficiency at presentation. Primary gonadal insufficiency, manifesting with microphallus and cryptorchidism, is reported in less than one-third of affected boys, all with concomitant adrenal disease. Mild primary hypothyroidism affects approximately a third of patients. There is paucity of data on the impact of SGPL1 deficiency on growth, and pubertal development, limited by the early and high mortality rate (approximately 50%). There is no clear genotype–phenotype correlation overall in the syndrome, with variable disease penetrance within individual kindreds. However, with regards to endocrine phenotype, the most prevalent disease variant p.R222Q (affecting 22%) is most consistently associated with isolated glucocorticoid deficiency. To conclude, SPLIS is associated with significant multiple endocrine disorders. While endocrinopathy in the syndrome generally presents in infancy, late-onset disease also occurs. Screening for these is therefore warranted both at diagnosis and through follow-up

    Analysis of genetic systems using experimental evolution and whole-genome sequencing

    Get PDF
    The application of whole-genome sequencing to the study of microbial evolution promises to reveal the complex functional networks of mutations that underlie adaptation. A recent study of parallel evolution in populations of Escherichia coli shows how adaptation involves both functional changes to specific proteins as well as global changes in regulation

    Insights into the Function of the CRM1 Cofactor RanBP3 from the Structure of Its Ran-Binding Domain

    Get PDF
    Proteins bearing a leucine-rich nuclear export signal (NES) are exported from the nucleus by the transport factor CRM1, which forms a cooperative ternary complex with the NES-bearing cargo and with the small GTPase Ran. CRM1-mediated export is regulated by RanBP3, a Ran-interacting nuclear protein. Unlike the related proteins RanBP1 and RanBP2, which promote disassembly of the export complex in the cytosol, RanBP3 acts as a CRM1 cofactor, enhancing NES export by stabilizing the export complex in the nucleus. RanBP3 also alters the cargo selectivity of CRM1, promoting recognition of the NES of HIV-1 Rev and of other cargos while deterring recognition of the import adaptor protein Snurportin1. Here we report the crystal structure of the Ran-binding domain (RBD) from RanBP3 and compare it to RBD structures from RanBP1 and RanBP2 in complex with Ran and CRM1. Differences among these structures suggest why RanBP3 binds Ran with unusually low affinity, how RanBP3 modulates the cargo selectivity of CRM1, and why RanBP3 promotes assembly rather than disassembly of the export complex. The comparison of RBD structures thus provides an insight into the functional diversity of Ran-binding proteins
    • …
    corecore