917 research outputs found

    Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, Part 2: Insights from meteoric 10Be

    Get PDF
    Regolith-mantled hillslopes are ubiquitous features of most temperate landscapes, and their morphology reflects the climatically, biologically, and tectonically mediated interplay between regolith production and downslope transport. Despite intensive research, few studies have quantified both of these mass fluxes in the same field site. Here we present an analysis of 87 meteoric 10Be measurements from regolith and bedrock within the Susquehanna Shale Hills Critical Zone Observatory (SSHO), in central Pennsylvania. Meteoric 10Be concentrations in bulk regolith samples (n=73) decrease with regolith depth. Comparison of hillslope meteoric 10Be inventories with analyses of rock chip samples (n=14) from a 24 m bedrock core confirms that >80% of the total inventory is retained in the regolith. The systematic downslope increase of meteoric 10Be inventories observed at SSHO is consistent with 10Be accumulation in slowly creeping regolith (∼ 0.2 cm yr-1). Regolith flux inferred from meteoric 10Be varies linearly with topographic gradient (determined from high-resolution light detection and ranging-based topography) along the upper portions of hillslopes at SSHO. However, regolith flux appears to depend on the product of gradient and regolith depth where regolith is thick, near the base of hillslopes. Meteoric 10Be inventories at the north and south ridgetops indicate minimum regolith residence times of 10.5 ± 3.7 and 9.1 ± 2.9 ky, respectively, similar to residence times inferred from U-series isotopes in Ma et al. (2013). The combination of our results with U-series-derived regolith production rates implies that regolith production and erosion rates are similar to within a factor of two on SSHO hillcrests. ©2013. American Geophysical Union. All Rights Reserved

    A Perspective on the Recent Progress in Solution-processed Methods for Highly Efficient Perovskite Solar Cells

    Get PDF
    Perovskite solar cells (PSCs) were developed in 2009 and have led to a number of significant improvements in clean energy technology. The power conversion efficiency (PCE) of PSCs has increased exponentially and currently stands at 22%. PSCs are transforming photovoltaic (PV) technology, outpacing many established PV technologies through their versatility and roll-to-roll manufacturing compatibility. The viability of low-temperature and solution-processed manufacturing has further improved their viability. This article provides a brief overview of the stoichiometry of perovskite materials, the engineering behind various modes of manufacturing by solution processing methods, and recommendations for future research to achieve large-scale manufacturing of high efficienc

    Biotic controls on solute distribution and transport in headwater catchments

    Get PDF
    Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of headwater catchments underlain by shale in Pennsylvania, USA (Shale Hills) 5 and Wales, UK (Plynlimon), dissimilar concentration-discharge behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation. Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heteroge- 10 neous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic “bioactive” behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters 15 across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where soil organic matter (SOM) is dom- 20 inantly in lowlands (e.g., Shale Hills), bioactive elements are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), bioactive elements are released later during rainfall events. The distribution of vegetation and SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments
    corecore