803 research outputs found
Black Hole Criticality in the Brans-Dicke Model
We study the collapse of a free scalar field in the Brans-Dicke model of
gravity. At the critical point of black hole formation, the model admits two
distinctive solutions dependent on the value of the coupling parameter. We find
one solution to be discretely self-similar and the other to exhibit continuous
self-similarity.Comment: 4 pages, REVTeX 3.0, 5 figures include
The Origin of Structures in Generalized Gravity
In a class of generalized gravity theories with general couplings between the
scalar field and the scalar curvature in the Lagrangian, we can describe the
quantum generation and the classical evolution of both the scalar and tensor
structures in a simple and unified manner. An accelerated expansion phase based
on the generalized gravity in the early universe drives microscopic quantum
fluctuations inside a causal domain to expand into macroscopic ripples in the
spacetime metric on scales larger than the local horizon. Following their
generation from quantum fluctuations, the ripples in the metric spend a long
period outside the causal domain. During this phase their evolution is
characterized by their conserved amplitudes. The evolution of these
fluctuations may lead to the observed large scale structures of the universe
and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur
Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations
Models of cosmic inflation suggest that our universe underwent an early phase
of accelerated expansion, driven by the dynamics of one or more scalar fields.
Inflationary models make specific, quantitative predictions for several
observable quantities, including particular patterns of temperature anistropies
in the cosmic microwave background radiation. Realistic models of high-energy
physics include many scalar fields at high energies. Moreover, we may expect
these fields to have nonminimal couplings to the spacetime curvature. Such
couplings are quite generic, arising as renormalization counterterms when
quantizing scalar fields in curved spacetime. In this chapter I review recent
research on a general class of multifield inflationary models with nonminimal
couplings. Models in this class exhibit a strong attractor behavior: across a
wide range of couplings and initial conditions, the fields evolve along a
single-field trajectory for most of inflation. Across large regions of phase
space and parameter space, therefore, models in this general class yield robust
predictions for observable quantities that fall squarely within the "sweet
spot" of recent observations.Comment: 17pp, 2 figs. References added to match the published version.
Published in {\it At the Frontier of Spacetime: Scalar-Tensor Theory, Bell's
Inequality, Mach's Principle, Exotic Smoothness}, ed. T. Asselmeyer-Maluga
(Springer, 2016), pp. 41-57, in honor of Carl Brans's 80th birthda
On the Friedmann Equation in Brane-World Scenarios
The Friedmann law on the brane generically depends quadratically on the brane
energy density and involves a ``dark radiation'' term due to the bulk Weyl
tensor. Despite its unfamiliar form, we show how it can be derived from a
standard four-dimensional Brans-Dicke theory at low energy. In particular, the
dark radiation term is found to depend linearly on the brane energy densities.
For any equation of state on the branes, the radion evolves such as to generate
radiation-dominated cosmology. The radiation-dominated era is conventional and
consistent with nucleosynthesis.Comment: 4 pages. v2,v3: discussion on BBN extended, minor correction
Quantum Cosmology for the General Bianchi Type II, VI(Class A) and VII(Class A) vacuum geometries
The canonical quantization of the most general minisuperspace actions --i.e.
with all six scale factor as well as the lapse function and the shift vector
present-- describing the vacuum type II, VI and VII geometries, is considered.
The reduction to the corresponding physical degrees of freedom is achieved
through the usage of the linear constraints as well as the quantum version of
the entire set of classical integrals of motion.Comment: 23 pages, LaTeX2e, No figure
Stationary Points of Scalar Fields Coupled to Gravity
We investigate the dynamics of gravity coupled to a scalar field using a
non-canonical form of the kinetic term. It is shown that its singular point
represents an attractor for classical solutions and the stationary value of the
field may occur distant from the minimum of the potential. In this paper
properties of universes with such stationary states are considered. We reveal
that such state can be responsible for modern dark energy density.Comment: H. Kroger, invited talk, FFP6, Udine (2004), revised version with
corrected author lis
A note on wavemap-tensor cosmologies
We examine theories of gravity which include finitely many coupled scalar
fields with arbitrary couplings to the curvature (wavemaps). We show that the
most general scalar-tensor -model action is conformally equivalent to
general relativity with a minimally coupled wavemap with a particular target
metric. Inflation on the source manifold is then shown to occur in a novel way
due to the combined effect of arbitrary curvature couplings and wavemap
self-interactions. A new interpretation of the conformal equivalence theorem
proved for such `wavemap-tensor' theories through brane-bulk dynamics is also
discussed.Comment: 8 pages, LaTeX, to appear in the Proceedings of the 2nd Hellenic
Cosmology Workshop, National Observatory of Athens, April 21-22, 2001,
(Kluwer 2001
Extended Gravity Theories and the Einstein-Hilbert Action
I discuss the relation between arbitrarily high-order theories of gravity and
scalar-tensor gravity at the level of the field equations and the action. I
show that -order gravity is dynamically equivalent to Brans-Dicke
gravity with an interaction potential for the Brans-Dicke field and further
scalar fields. This scalar-tensor action is then conformally equivalent to the
Einstein-Hilbert action with scalar fields. This clarifies the nature and
extent of the conformal equivalence between extended gravity theories and
general relativity with many scalar fields.Comment: 12 pages, Plain Latex, SUSSEX-AST-93/7-
Collapse to Black Holes in Brans-Dicke Theory: I. Horizon Boundary Conditions for Dynamical Spacetimes
We present a new numerical code that evolves a spherically symmetric
configuration of collisionless matter in the Brans-Dicke theory of gravitation.
In this theory the spacetime is dynamical even in spherical symmetry, where it
can contain gravitational radiation. Our code is capable of accurately tracking
collapse to a black hole in a dynamical spacetime arbitrarily far into the
future, without encountering either coordinate pathologies or spacetime
singularities. This is accomplished by truncating the spacetime at a spherical
surface inside the apparent horizon, and subsequently solving the evolution and
constraint equations only in the exterior region. We use our code to address a
number of long-standing theoretical questions about collapse to black holes in
Brans-Dicke theory.Comment: 46 pages including figures, uuencoded gz-compressed postscript,
Submitted to Phys Rev
- …