848 research outputs found

    Absolute spacetime: the twentieth century ether

    Get PDF
    All gauge theories need ``something fixed'' even as ``something changes.'' Underlying the implementation of these ideas all major physical theories make indispensable use of an elaborately designed spacetime model as the ``something fixed,'' i.e., absolute. This model must provide at least the following sequence of structures: point set, topological space, smooth manifold, geometric manifold, base for various bundles. The ``fine structure'' of spacetime inherent in this sequence is of course empirically unobservable directly, certainly when quantum mechanics is taken into account. This issue is at the basis of the difficulties in quantizing general relativity and has been approached in many different ways. Here we review an approach taking into account the non-Boolean properties of quantum logic when forming a spacetime model. Finally, we recall how the fundamental gauge of diffeomorphisms (the issue of general covariance vs coordinate conditions) raised deep conceptual problems for Einstein in his early development of general relativity. This is clearly illustrated in the notorious ``hole'' argument. This scenario, which does not seem to be widely known to practicing relativists, is nevertheless still interesting in terms of its impact for fundamental gauge issues.Comment: Contribution to Proceedings of Mexico Meeting on Gauge Theories of Gravity in honor of Friedrich Heh

    Modified gravity and the origin of inertia

    Full text link
    Modified gravity theory is known to violate Birkhoff's theorem. We explore a key consequence of this violation, the effect of distant matter in the Universe on the motion of test particles. We find that when a particle is accelerated, a force is experienced that is proportional to the particle's mass and acceleration and acts in the direction opposite to that of the acceleration. We identify this force with inertia. At very low accelerations, our inertial law deviates slightly from that of Newton, yielding a testable prediction that may be verified with relatively simple experiments. Our conclusions apply to all gravity theories that reduce to a Yukawa-like force in the weak field approximation.Comment: 4 pages, 3 figures; published version with updated reference

    Quantum Cosmology for the General Bianchi Type II, VI(Class A) and VII(Class A) vacuum geometries

    Get PDF
    The canonical quantization of the most general minisuperspace actions --i.e. with all six scale factor as well as the lapse function and the shift vector present-- describing the vacuum type II, VI and VII geometries, is considered. The reduction to the corresponding physical degrees of freedom is achieved through the usage of the linear constraints as well as the quantum version of the entire set of classical integrals of motion.Comment: 23 pages, LaTeX2e, No figure

    A note on wavemap-tensor cosmologies

    Get PDF
    We examine theories of gravity which include finitely many coupled scalar fields with arbitrary couplings to the curvature (wavemaps). We show that the most general scalar-tensor σ\sigma-model action is conformally equivalent to general relativity with a minimally coupled wavemap with a particular target metric. Inflation on the source manifold is then shown to occur in a novel way due to the combined effect of arbitrary curvature couplings and wavemap self-interactions. A new interpretation of the conformal equivalence theorem proved for such `wavemap-tensor' theories through brane-bulk dynamics is also discussed.Comment: 8 pages, LaTeX, to appear in the Proceedings of the 2nd Hellenic Cosmology Workshop, National Observatory of Athens, April 21-22, 2001, (Kluwer 2001

    Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations

    Get PDF
    Models of cosmic inflation suggest that our universe underwent an early phase of accelerated expansion, driven by the dynamics of one or more scalar fields. Inflationary models make specific, quantitative predictions for several observable quantities, including particular patterns of temperature anistropies in the cosmic microwave background radiation. Realistic models of high-energy physics include many scalar fields at high energies. Moreover, we may expect these fields to have nonminimal couplings to the spacetime curvature. Such couplings are quite generic, arising as renormalization counterterms when quantizing scalar fields in curved spacetime. In this chapter I review recent research on a general class of multifield inflationary models with nonminimal couplings. Models in this class exhibit a strong attractor behavior: across a wide range of couplings and initial conditions, the fields evolve along a single-field trajectory for most of inflation. Across large regions of phase space and parameter space, therefore, models in this general class yield robust predictions for observable quantities that fall squarely within the "sweet spot" of recent observations.Comment: 17pp, 2 figs. References added to match the published version. Published in {\it At the Frontier of Spacetime: Scalar-Tensor Theory, Bell's Inequality, Mach's Principle, Exotic Smoothness}, ed. T. Asselmeyer-Maluga (Springer, 2016), pp. 41-57, in honor of Carl Brans's 80th birthda

    Black Holes with a Massive Dilaton

    Get PDF
    The modifications of dilaton black holes which result when the dilaton acquires a mass are investigated. We derive some general constraints on the number of horizons of the black hole and argue that if the product of the black hole charge QQ and the dilaton mass mm satisfies Qm<O(1)Q m < O(1) then the black hole has only one horizon. We also argue that for Qm>O(1)Q m > O(1) there may exist solutions with three horizons and we discuss the causal structure of such solutions. We also investigate the possible structures of extremal solutions and the related problem of two-dimensional dilaton gravity with a massive dilaton.Comment: 36 pages with 5 figures (as uuencoded compressed tar file) (revised version has one major change in bound on mass for extremal solution and minor typos fixed), harvma
    • 

    corecore