5 research outputs found

    Radiation transport modelling for the interpretation of oblique ECE measurements

    No full text
    The electron cyclotron emission (ECE) diagnostic provides routinely electron temperature (Te) measurements. At ASDEX Upgrade an electron cyclotron forward model, solving the radiation transport equation for given Te and electron density profile, is used in the framework of integrated data analysis. With this method Te profiles can be obtained from ECE measurements even for plasmas with low optical depth. However, due to the assumption of straight lines of sight and an absorption coefficient in the quasi-perpendicular approximation this forward model is not suitable for the interpretation of measurements by ECE diagnostics with an oblique line of sight. Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates

    Database study of turbulent electron temperature fluctuation measurements at ASDEX Upgrade

    No full text
    In this work, an automated method for the analysis of data from the correlation electron cyclotron emission (CECE) diagnostic is applied to discharges in the ASDEX Upgrade (AUG) tokamak. This recently developed, automated method provides an efficient means of accurately analysing large quantities of experimental turbulence data, enabling the development of the largest database of CECE measurements of tokamak plasmas to-date. The turbulence database provides the opportunity to search for large-scale trends in experimental data to improve our understanding of transport-relevant plasma turbulence. The results of physics-based investigations utilizing this turbulence database will be reported on separately from this work

    Electron temperature fluctuation levels of the quasi-coherent mode across the plasma radius

    No full text
    EDA H-mode is an ELM-free regime in which the edge quasi-coherent mode (QCM) replaces the ELMs. The estimated location of the quasi-coherent mode is in a partly optically thin region of steep gradients localized between ρpol = 0.96 -1. Relative fluctuations of radiation temperature between 15 and 80 kHz are about 7% with significant density contribution. In the electron cyclotron emission (ECE) channels with resonances in the plasma core, a mode with the same frequency as the quasi-coherent mode is measured. The peak amplitude of both core and edge modes matches the strongest electron temperature gradient in the core and the edge, respectively. The ECE core and edge signals are out of phase. The radiation transport forward model (ECRad) shows that the refraction explains the phase relation between the edge and the core ECE channels. The phase correlates with the sign of the core Te. The amplitude of the fluctuations in the core decreases with decreasing gradients, which is the trend seen in the experiment. The amplitude ratio of the core and edge fluctuation is a factor of five in the experiment; this ratio remains a factor of a hundred in the modeling

    Electron temperature fluctuation measurements with Correlation Electron Cyclotron Emission in L-mode and I-mode plasmas at ASDEX Upgrade

    No full text
    The Correlation Electron Cyclotron Emission (CECE) diagnostic at ASDEX Upgrade (AUG) is used to investigate the features of outer core and pedestal (ρpol = 0.85-1.0) turbulence across confinement regime transitions. The I-mode confinement regime is a promising operational scenario for future fusion reactors because it features high energy confinement without high particle confinement, but the nature of the edge and pedestal turbulence in I-mode plasmas is still under investigation. The edge Weakly Coherent Mode (WCM) appears in the I-mode pedestal and may play a role in transport. In this work we explore electron temperature (Te) fluctuations in the plasma outer core and pedestal using a 24-channel high radial resolution CECE radiometer. CECE measurements provide turbulence information including the Te fluctuation amplitude, turbulent spectra, and radial localization of turbulent features. With CECE measurements we show that the WCM is localized in the pedestal region in both L-mode and I-mode and is measured in optically thick plasmas with a Te fluctuation amplitude of 2.3%. Broadband drift wave turbulence is measured in the outer core with a Te fluctuation amplitude of <1%. A second CECE system recently installed at AUG allowed for non-standard fluctuation measurements during L-mode and I-mode experiments. The second CECE system was toroidally separated from the primary system, allowing measurements of the long-range toroidal correlation of the WCM indicating its low toroidal mode number. A reflectometer sharing a line of sight with the second CECE system enabled density-temperature cross-phase (αne Te ) measurements. The WCM αne Te changes between L-mode and I-mode as the Te gradient steepens
    corecore