3 research outputs found

    Quantum transport through mesoscopic disordered interfaces, junctions, and multilayers

    Full text link
    The study explores perpendicular transport through macroscopically inhomogeneous three-dimensional disordered conductors using mesoscopic methods (real-space Green function technique in a two-probe measuring geometry). The nanoscale samples (containing 1000\sim1000 atoms) are modeled by a tight-binding Hamiltonian on a simple cubic lattice where disorder is introduced in the on-site potential energy. I compute the transport properties of: disordered metallic junctions formed by concatenating two homogenous samples with different kinds of microscopic disorder, a single strongly disordered interface, and multilayers composed of such interfaces and homogeneous layers characterized by different strength of the same type of microscopic disorder. This allows us to: contrast resistor model (semiclassical) approach with fully quantum description of dirty mesoscopic multilayers; study the transmission properties of dirty interfaces (where Schep-Bauer distribution of transmission eigenvalues is confirmed for single interface, as well as for the stack of such interfaces that is thinner than the localization length); and elucidate the effect of coupling to ideal leads (``measuring apparatus'') on the conductance of both bulk conductors and dirty interfaces When multilayer contains a ballistic layer in between two interfaces, its disorder-averaged conductance oscillates as a function of Fermi energy. I also address some fundamental issues in quantum transport theory--the relationship between Kubo formula in exact state representation and ``mesoscopic Kubo formula'' (which gives the zero-temperature conductance of a finite-size sample attached to two semi-infinite ideal leads) is thoroughly reexamined by comparing their answers for both the junctions and homogeneous samples.Comment: 18 pages, 17 embedded EPS figure

    Economics of Agriculture - Ekonomika Poljoprivrede Vol.1, Issue 1, 2012

    No full text
    corecore