4 research outputs found

    New Approach in Research of Quartzes and Quartzites for Ferroalloys and Silicon Production

    No full text
    This article deals with material research of selected types of quartz and quartzites in order to determine the priority of their use in the production of ferrosilicon and pure silicon, respectively. The highest quality quartzes and quartzites are commonly used in metallurgy, but not all types of these silicon raw materials are suitable for the production of ferrosilicon and pure silicon, despite their similar chemical composition. Behavior differences can be observed in the process conditions of heating and carbothermic production of ferrosilicon and silicon. These differences depend, in particular, on the nature and content of impurities, and the granularity (lumpiness) and microstructure of individual grains. The research focused primarily on determining the physicochemical and metallurgical properties of silicon raw materials. An integral part of the research was also the creation of a new methodology for determining the reducibility of quartzes (or quartzites), which could be used for real industrial processes and should be very reliable. The results of the laboratory experiments and evaluation of the physicochemical and metallurgical properties of the individual quartzes (or quartzites) are presented in the discussion. Based on comparison of the tested samples’ properties, their priority of use was determined. This research revealed the highest quality in quartzite from Sweden (Dalbo deposit) and Ukraine (Ovruč deposit) and quartz from Slovakia (Švedlár deposit). The use of these raw materials in industrial conditions is expected to result in the achievement of better production parameters, such as higher yield and product quality and lower electricity consumption

    Change of the Chemical and Mineralogical Composition of the Slag during Oxygen Blowing in the Oxygen Converter Process

    No full text
    The article presents the results of the investigation of changes in the chemical and mineralogical composition of slag during steel production in a blown oxygen converter. This process was monitored using the slag samples that were collected during the period when oxygen blowing into an oxygen converter was interrupted. The slag samples were collected after 150 s (2.5 min), then after 5, 8, 11, and 24 min of oxygen blowing, and in minute 27 when oxygen blowing was terminated. The sampling was carried out within five consecutive melting processes. The article presents and documents the changes in the contents of CaO, CaO (free), Fe (total), FeO, SiO2, and in the basicity of the slag during oxygen blowing. It also provides the characteristics of individual structural components formed during oxygen blowing and a detailed description of the lime assimilation process, including the formation of the final structure of the slag, consisting of dicalcium silicate (2CaO·SiO2), tricalcium silicate (3CaO·SiO2), RO-phase, and calcium ferrites (2CaO·Fe2O3). The results of the investigation of the changes in the chemical composition of the slag during oxygen blowing in an oxygen converter were compared with the changes in the structural composition of the slag

    Geometric Modification of the Tundish Impact Point

    No full text
    In connection with the increasing requirements for cleanliness in conticast steel, it is necessary to develop original solutions. The tundish, as the last refractory-lined reactor, gives enough space to remove inclusions by optimizing the flow of steel. The basic component of the tundish is the impact pad, the shape of which creates a suitable flow of steel, thus making it part of the tundish metallurgy. The optimal steel flow in the tundish must avoid creating dead zone areas, or the slag “eye” phenomenon in the slag layer around the ladle shroud, and is intended to create conditions for the release of inclusions by promoting reactions at the steel-slag phase interface. The flow also has to prevent excessive erosion of the tundish refractory lining. This paper compares the standard impact pad with the “Spheric” spherical impact pad using computional fluid dynamiscs (CFD) tools and physical modelling. The evaluation criteria are residence time and flow in the tundish at three different casting speeds

    Examination of Behavior from Selected Foundry Sands with Alkali Silicate-Based Inorganic Binders

    No full text
    The automotive industry is one of the most important customers for the foundry industry. In particular, casting of engine parts for combustion engines is one of the most demanding areas of casting technology. New generation of engine blocks and cylinder heads are getting geometrically more complicated in order to maintain or even increase performance. With the increased complexity, the strain for the casting molds is growing and the widely used technology of core making with standard silica sands is, for several applications, no longer reaching the demanded results. Furthermore, in last decade, there has been an effort in using inorganic binders in core making process, which brings along some additional technological challenges. In order to cope with these challenges, in this paper, silica and non-silica sands with round and angular grains as well as with fine and coarse grains are examined using an inorganic binder for strength, permeability, and thermal stability. The results shall provide useful information about the possibilities of application and combining different types of foundry sands, both silica and non-silica. With their impact on the selected sand core properties, they can help in solving problems in the core making process as well as reaching a high quality of the final product-casting
    corecore