72 research outputs found

    Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib

    Get PDF
    Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic

    A screen to identify drug resistant variants to target-directed anti-cancer agents

    Get PDF
    The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec), a specific inhibitor of the Chronic Myeloid Leukemia (CML)-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair

    Two different point mutations in ABL gene ATP-binding domain conferring Primary Imatinib resistance in a Chronic Myeloid Leukemia (CML) patient: A case report

    Get PDF
    Imatinib (Gleevec) is the effective therapy for BCR-ABL positive CML patients. Point mutations have been detected in ATP-binding domain of ABL gene which disturbs the binding of Gleevec to this target leading to resistance. Detection of mutations is helpful in clinical management of imatinib resistance. We established a very sensitive (ASO) PCR to detect mutations in an imatinib-resistant CML patient. Mutations C944T and T1052C were detected which cause complete partial imatinib resistance, respectively. This is the first report of multiple point mutations conferring primary imatinib resistance in same patient at the same time. Understanding the biological reasons of primary imatinib resistance is one of the emerging issues of pharmacogenomics and will be helpful in understanding primary resistance of molecularly-targeted cancer therapies. It will also be of great utilization in clinical management of imatinib resistance. Moreover, this ASO-PCR assay is very effective in detecting mutations related to imatinib resistance

    π+\pi^+ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction Îłp→nπ+\gamma p \to n \pi^+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure

    A single-tube allele specific-polymerase chain reaction to detect T315I resistant mutation in chronic myeloid leukemia patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>BCR-ABL </it>kinase domain (KD) mutation is the major mechanism contributing to suboptimal response to tyrosine kinase inhibitors (TKI) in <it>BCR-ABL</it>-positive chronic myeloid leukemia (CML) patients. T315I mutation, as one of the most frequent KD mutations, has been shown to be strongly associated with TKI resistance and subsequent therapeutic failure. A simple and sensitive method is thus required to detect T315I mutation at the earliest stage.</p> <p>Methods</p> <p>A single-tube allele specific-polymerase chain reaction (AS-PCR) method was developed to detect T315I mutation in a mixture of normal and mutant alleles of varying dilutions. Denaturing high performance liquid chromatography (DHPLC) and direct sequencing were performed as a comparison to AS-PCR.</p> <p>Results</p> <p>T315I mutant bands were observed in the mixtures containing as low as 0.5-1% of mutant alleles by AS-PCR. The detection sensitivity of DHPLC was around 1.5-3% dilution whereas sequencing analysis was unable to detect below 6.25% dilution.</p> <p>Conclusion</p> <p>A single-tube AS-PCR is a rapid and sensitive screening method for T315I mutation. Detection of the most resistant leukemic clone in CML patients undergoing TKI therapy should be feasible with this simple and inexpensive method.</p

    Janus kinase 2 regulates Bcr–Abl signaling in chronic myeloid leukemia

    Get PDF
    Despite the success of imatinib mesylate (IM) in the early chronic phase of chronic myeloid leukemia (CML), patients are resistant to IM and other kinase inhibitors in the later stages of CML. Our findings indicate that inhibition of Janus kinase 2 (Jak2) in Bcr–Abl+ cells overcomes IM resistance although the precise mechanism of Jak2 action is unknown. Knocking down Jak2 in Bcr–Abl+ cells reduced levels of the Bcr–Abl protein and also the phosphorylation of Tyr177 of Bcr–Abl, and Jak2 overexpression rescued these knockdown effects. Treatment of Bcr–Abl+ cells with Jak2 inhibitors for 4–6 h but not with IM also reduced Bcr–Abl protein and pTyr177 levels. In vitro kinase experiments performed with recombinant Jak2 showed that Jak2 readily phosphorylated Tyr177 of Bcr–Abl (a Jak2 consensus site, YvnV) whereas c-Abl did not. Importantly, Jak2 inhibition decreased pTyr177 Bcr–Abl in immune complexes but did not reduce levels of Bcr–Abl, suggesting that the reduction of Bcr–Abl by Jak2 inhibition is a separate event from phosphorylation of Tyr177. Jak2 inhibition by chemical inhibitors (TG101209/WP1193) and Jak2 knockdown diminished the activation of Ras, PI-3 kinase pathways and reduced levels of pTyrSTAT5. These findings suggest that Bcr–Abl stability and oncogenic signaling in CML cells are under the control of Jak2

    Is there a cloud in the silver lining for imatinib?

    Get PDF
    Imatinib mesylate (Gleevec&#174; or Glivec&#174;), a small molecule tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia, has been said to herald the dawn of a new er-a of rationally designed, molecularly targeted oncotherapy. Lurking on the same new horizon, however, is the age-old spectre of drug resistance. This review sets the intoxicating clinical perspective against the more sobering laboratory evidence of such divergent mechanisms of imatinib resistance as gene amplification and stem cell quiescence. Polychemotherapy has already been considered to combat resistance, but a more innovative, as yet unformulated, approach may be advocated

    Beam-Recoil Polarization Transfer in the Nucleon Resonance Region in the Exclusive e⃗p→eâ€ČK+Λ⃗\vec{e}p \to e'K^+\vec{\Lambda} and e⃗p→eâ€ČK+Σ⃗0\vec{e}p \to e'K^+\vec{\Sigma}^0 Reactions at CLAS

    Full text link
    Beam-recoil transferred polarizations for the exclusive e⃗p→eâ€ČK+Λ⃗,Σ⃗0\vec{e}p \to e'K^+ \vec{\Lambda},\vec{\Sigma}^0 reactions have been measured using the CLAS spectrometer at Jefferson Laboratory. New measurements have been completed at beam energies of 4.261 and 5.754 GeV that span a range of momentum transfer Q2Q^2 from 0.7 to 5.4 GeV2^2, invariant energy WW from 1.6 to 2.6 GeV, and the full center-of-mass angular range of the K+K^+ meson. These new data add to the existing CLAS K+ΛK^+\Lambda measurements at 2.567 GeV, and provide the first-ever data for the K+ÎŁ0K^+\Sigma^0 channel in electroproduction. Comparisons of the data with several theoretical models are used to study the sensitivity to s-channel resonance contributions and the underlying reaction mechanism. Interpretations within two semi-classical partonic models are made to probe the underlying reaction mechanism and the ssˉs\bar{s} quark-pair creation dynamics.Comment: 48 pages, 22 figure

    A measurement of the differential cross section for the reaction Îłn→π−p\gamma n \to \pi^{-} p from deuterium

    Full text link
    We report a measurement of the differential cross section for the Îłn→π−p\gamma n \to \pi^- p process from the CLAS detector at Jefferson Lab in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles (Ξc.m.\theta_{c.m.}) between 50∘^\circ and 115∘^\circ. We confirm a previous indication of a broad enhancement around a c.m. energy (s\sqrt{s}) of 2.2 GeV at Ξc.m.=90∘\theta_{c.m.}=90^\circ in the scaled differential cross section, s7dσdts^7 {\frac{d\sigma}{dt}}. Our data show the angular dependence of this enhancement as the scaling region is approached in the kinematic region from 70∘^\circ to 105∘^\circ.Comment: 6 pages, 3 figures. submitted to PR
    • 

    corecore