1,115 research outputs found

    Influence of Hybridization on the Properties of the Spinless Falicov-Kimball Model

    Full text link
    Without a hybridization between the localized f- and the conduction (c-) electron states the spinless Falicov-Kimball model (FKM) is exactly solvable in the limit of high spatial dimension, as first shown by Brandt and Mielsch. Here I show that at least for sufficiently small c-f-interaction this exact inhomogeneous ground state is also obtained in Hartree-Fock approximation. With hybridization the model is no longer exactly solvable, but the approximation yields that the inhomogeneous charge-density wave (CDW) ground state remains stable also for finite hybridization V smaller than a critical hybridization V_c, above which no inhomogeneous CDW solution but only a homogeneous solution is obtained. The spinless FKM does not allow for a ''ferroelectric'' ground state with a spontaneous polarization, i.e. there is no nonvanishing -expectation value in the limit of vanishing hybridization.Comment: 7 pages, 6 figure

    Fracture strength of cusp-replacing fibre-strengthened composite restorations

    Get PDF
    INTRODUCTION : Fracture of composite restorations, especially when one or more cusps are replaced, is a common reason for failure. Finite element analysis has shown that crack propagation at the tension side of the restoration signals the failure. AIMS AND OBJECTIVES : The strengthening effect of placing a fibre substructure on the tension side was investigated and the results compared with the fracture strengths of a conventional posterior composite without a substructure (control) and of a composite reinforced with fibres incorporated within the composite. DESIGN : The study was an in vitro experimental blind study. METHODS : 75 extracted lower first molars were divided into three groups of 25 teeth each to allow for the comparisons and the restorations were placed. All specimens were thermocycled for 500 cycles between 5°C and 55°C with a dwell time of 30 seconds. Each restoration was subjected to loading on a Universal testing machine at a 30° angle to the long axis of the tooth, until fracture occurred. Maximum force before failure (Fmax in N) was recorded. RESULTS : The results indicated a significantly higher strength for the composite resin restorations placed on a fibre substructure. CONCLUSION : A uni-directional fibre substructure is recommended to achieve greatest strength.http://www.sada.co.zaam201

    Fracture behaviour patterns of cusp-replacing fibre strengthened composite restorations

    Get PDF
    OBJECTIVES : To investigate and compare, in vitro, the fracture behaviours of three types of cusp-replacing posterior composite resin restorations. METHODS : Standard preparations for posterior composite restoration of the mesio-lingual cusp were cut on seventy- five extracted lower left first and second molars and restorations placed. Group A (control, n =25) with a conventional posterior composite resin, Group B (n=25): resin reinforced with nano-scale electrospun glass fibres Group C (n=25) :resin reinforced with a fibre substructure. Specimens were thermocycled for 500 cycles between 5°C and 55°C with a dwell time of 30 seconds, then embedded in plastic cylinders in acrylic resin. The specimens were loaded in a universal testing machine at a 30° angle to the long axis of the tooth until fracture occurred. Fracture patterns were highlighted by staining, studied under a microscope and classified as favourable (restorable) or unfavourable (non-restorable). Sub-classification included adhesive and cohesive failures. RESULTS : Group C exhibited significantly more “restorable” fractures. Group B displayed significantly more “nonrestorable” fractures. Fracture patterns differed significantly between the two fibre-strengthening techniques. (Fisher’s Exact Test p = 0.05) CLINICAL SIGNIFICANCE : Resin restorations reinforced with glass-fibre substructures are more readily repaired after fracture, saving tooth structure, and reducing costs to the patient.http://www.sada.co.zaam201

    General structure of the photon self-energy in non-commutative QED

    Get PDF
    We study the behavior of the photon two point function, in non-commutative QED, in a general covariant gauge and in arbitrary space-time dimensions. We show, to all orders, that the photon self-energy is transverse. Using an appropriate extension of the dimensional regularization method, we evaluate the one-loop corrections, which show that the theory is renormalizable. We also prove, to all orders, that the poles of the photon propagator are gauge independent and briefly discuss some other related aspects.Comment: 16 pages, revtex4. This is the final version to be published in Phys. Rev.

    Nonlinear excitations in CsNiF3 in magnetic fields perpendicular to the easy plane

    Full text link
    Experimental and numerical studies of the magnetic field dependence of the specific heat and magnetization of single crystals of CsNiF3 have been performed at 2.4 K, 2.9 K, and 4.2 K in magnetic fields up to 9 T oriented perpendicular to the easy plane. The experimental results confirm the presence of the theoretically predicted double peak structure in the specific heat arising from the formation of nonlinear spin modes. The demagnetizing effects are found to be negligible, and the overall agreement between the data and numerical predictions is better than reported for the case when the magnetic field was oriented in the easy plane. Demagnetizing effects might play a role in generating the difference observed between theory and experiment in previous work analyzing the excess specific heat using the sine-Gordon model.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Magnetic and Dynamic Properties of the Hubbard Model in Infinite Dimensions

    Full text link
    An essentially exact solution of the infinite dimensional Hubbard model is made possible by using a self-consistent mapping of the Hubbard model in this limit to an effective single impurity Anderson model. Solving the latter with quantum Monte Carlo procedures enables us to obtain exact results for the one and two-particle properties of the infinite dimensional Hubbard model. In particular we find antiferromagnetism and a pseudogap in the single-particle density of states for sufficiently large values of the intrasite Coulomb interaction at half filling. Both the antiferromagnetic phase and the insulating phase above the N\'eel temperature are found to be quickly suppressed on doping. The latter is replaced by a heavy electron metal with a quasiparticle mass strongly dependent on doping as soon as n<1n<1. At half filling the antiferromagnetic phase boundary agrees surprisingly well in shape and order of magnitude with results for the three dimensional Hubbard model.Comment: 32 page

    Weak-coupling Treatment of Electronic (Anti-)Ferroelectricity in the Extended Falicov-Kimball Model

    Full text link
    We study the (spinless) Falicov-Kimball model extended by a finite band width (hopping tft_f) of the localized (f-) electrons in infinite dimensions in the weak-coupling limit of a small local interband Coulomb correlation UU for half filling. In the case of overlapping conduction- and f-bands different kinds of ordered solutions are possible, namely charge-density wave (CDW) order, electronic ferroelectricity (EFE) and electronic antiferroelectricity (EAFE). The order parameters are calculated as a function of the model parameters and of the temperature. There is a first-order phase transition from the CDW-phase to the EFE- or EAFE-phase. The total energy is calculated to determine the thermodynamically stable solution. The quantum phase diagrams are calculated.Comment: 7 pages, 8 figure

    Kontsevich product and gauge invariance

    Full text link
    We analyze the question of U(1)U_{\star} (1) gauge invariance in a flat non-commutative space where the parameter of non-commutativity, θμν(x)\theta^{\mu\nu} (x), is a local function satisfying Jacobi identity (and thereby leading to an associative Kontsevich product). We show that in this case, both gauge transformations as well as the definitions of covariant derivatives have to modify so as to have a gauge invariant action. We work out the gauge invariant actions for the matter fields in the fundamental and the adjoint representations up to order θ2\theta^{2} while we discuss the gauge invariant Maxwell theory up to order θ\theta. We show that despite the modifications in the gauge transformations, the covariant derivative and the field strength, Seiberg-Witten map continues to hold for this theory. In this theory, translations do not form a subgroup of the gauge transformations (unlike in the case when θμν\theta^{\mu\nu} is a constant) which is reflected in the stress tensor not being conserved.Comment: 7 page

    Superconductivity from correlated hopping

    Full text link
    We consider a chain described by a next-nearest-neighbor hopping combined with a nearest-neighbor spin flip. In two dimensions this three-body term arises from a mapping of the three-band Hubbard model for CuO2_2 planes to a generalized tJt-J model and for large O-O hopping favors resonance-valence-bond superconductivity of predominantly dd-wave symmetry. Solving the ground state and low-energy excitations by analytical and numerical methods we find that the chain is a Luther-Emery liquid with correlation exponent Kρ=(2n)2/2K_{\rho} = (2-n)^2/2, where nn is the particle density.Comment: 10 pages, RevTeX 3.0 + 2 PostScript figs. Accepted for publication in Phys.Rev.
    corecore