886 research outputs found
Vortices in superconducting strips: interplay between surface effects and the pinning landscape
Vortices in a narrow superconducting strip with a square array of pinning
sites are studied. The interactions of vortices with other vortices and with
external sources (applied magnetic field and transport current) are calculated
via a screened Coulomb model. The edge barrier is taken into account and shown
to have an important role on the system dynamics. Numerical simulations in this
approach show that the field dependent magnetic moment presents peaks
corresponding to history dependent configurations of the vortex lattice. Some
effects of the edge barrier on the I-V characteristics are also reported.Comment: 4 pages, 3 figure
Fertilizer-N management and nitrous oxide emissions from four sites in Saskatchewan
Non-Peer ReviewedNitrous oxide (N2O) is a powerful greenhouse gas that also depletes stratospheric ozone. The use of fertilizer-N for agricultural purposes is thought to contribute significantly to Canadian anthropogenic N2O emissions. However, the influence of fertilizer-N form, placement, rates of application, and their interaction with soil and climate is not well understood. We report on a 3-year project that compared N2O emissions from four locations with contrasting soil and climatic conditions in Saskatchewan. Spring wheat was fertilized with urea and anhydrous ammonia (AA) banded in the fall, or in mid-row and side-row positions at seeding time in the spring. N2O emissions were similar from AA compared to urea. Emissions tended to be higher when fertilizer-N was placed in a mid-row compared to side-row banded position. Within the range of rates applied in this study, N2O emissions increased linearly with fertilizer-N rate. The percentage of fertilizer-N lost as N2O calculated from our data ranged from near zero (in drought conditions) to 1.0 %. Most values fell at or below 0.4 % with an overall mean of 0.2 %
Area Invariance of Apparent Horizons under Arbitrary Boosts
It is a well known analytic result in general relativity that the
2-dimensional area of the apparent horizon of a black hole remains invariant
regardless of the motion of the observer, and in fact is independent of the slice, which can be quite arbitrary in general relativity.
Nonetheless the explicit computation of horizon area is often substantially
more difficult in some frames (complicated by the coordinate form of the
metric), than in other frames. Here we give an explicit demonstration for very
restricted metric forms of (Schwarzschild and Kerr) vacuum black holes. In the
Kerr-Schild coordinate expression for these spacetimes they have an explicit
Lorentz-invariant form. We consider {\it boosted} versions with the black hole
moving through the coordinate system. Since these are stationary black hole
spacetimes, the apparent horizons are two dimensional cross sections of their
event horizons, so we compute the areas of apparent horizons in the boosted
space with (boosted) , and obtain the same result as in the
unboosted case. Note that while the invariance of area is generic, we deal only
with black holes in the Kerr-Schild form, and consider only one particularly
simple change of slicing which amounts to a boost. Even with these restrictions
we find that the results illuminate the physics of the horizon as a null
surface and provide a useful pedagogical tool. As far as we can determine, this
is the first explicit calculation of this type demonstrating the area
invariance of horizons. Further, these calculations are directly relevant to
transformations that arise in computational representation of moving black
holes. We present an application of this result to initial data for boosted
black holes.Comment: 19 pages, 3 figures. Added a new section and 2 plots along with a
coautho
Vortex Lattice Melting into Disentangled Liquid Followed by the 3D-2D Decoupling Transition in YBa_2Cu_4O_8 Single Crystals
A sharp resistance drop associated with vortex lattice melting was observed
in high quality YBa_2Cu_4O_8 single crystals. The melting line is well
described well by the anisotropic GL theory. Two thermally activated flux flow
regions, which were separated by a crossover line B_cr=1406.5(1-T/T_c)/T
(T_c=79.0 K, B_cr in T), were observed in the vortex liquid phase. Activation
energy for each region was obtained and the corresponding dissipation mechanism
was discussed. Our results suggest that the vortex lattice in YBa_2Cu_4O_8
single crystal melts into disentangled liquid, which then undergoes a 3D-2D
decoupling transition.Comment: 5 pages, 4 eps figures, RevTex (Latex2.09
Chemical and electronic structure of the heavily intermixed Cd,Zn S Ga CuSbS2 interface
The interface formation and chemical and electronic structure of the Cd,Zn S Ga CuSbS2 thin film solar cell heterojunction were studied using hard X ray photoelectron spectroscopy HAXPES of the bare absorber and a buffer absorber sample set for which the buffer thickness was varied between 1 and 50 nm. We find a heavily intermixed interface, involving Cu, Zn, and Cd as well as significant Ga and Cu profiles in the buffer. The valence band VB offset at the buffer absorber interface was derived as amp; 8722;1.3 0.1 eV, which must be considered an upper bound as the Cu diffused into the buffer might form a Cu derived VB maximum located closer to the Fermi level. The estimated conduction band minimum was cliff like; a situation made more severe considering the Cu deficiency found for the CuSbS2 surface. The complex interface structure s effect on the performance of Cd,Zn S Ga CuSbS2 based solar cells and its limitation is discussed together with possible mitigation strategie
X-ray Survey Results on Active Galaxy Physics and Evolution
This "pedagogical" review describes the key Chandra and XMM-Newton
extragalactic surveys to date and details some of their implications for AGN
physics and evolution. We additionally highlight two topics of current
widespread interest: (1) X-ray constraints on the AGN content of luminous
submillimeter galaxies, and (2) the demography and physics of high-redshift (z
> 4) AGN as revealed by X-ray observations. Finally, we discuss prospects for
future X-ray surveys with Chandra, XMM-Newton, and upcoming missions.Comment: 26 pages, in Physics of Active Galactic Nuclei at All Scales, eds.
Alloin D., Johnson R., Lira P. (Springer-Verlag, Berlin), version with all
figures at http://www.astro.psu.edu/users/niel/papers/papers.htm
Effective Functional Form of Regge Trajectories
We present theoretical arguments and strong phenomenological evidence that
hadronic Regge trajectories are essentially nonlinear and can be well
approximated, for phenomenological purposes, by a specific square-root form.Comment: 29 pages, LaTeX. Published versio
Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope
Nearby clusters and groups of galaxies are potentially bright sources of
high-energy gamma-ray emission resulting from the pair-annihilation of dark
matter particles. However, no significant gamma-ray emission has been detected
so far from clusters in the first 11 months of observations with the Fermi
Large Area Telescope. We interpret this non-detection in terms of constraints
on dark matter particle properties. In particular for leptonic annihilation
final states and particle masses greater than ~200 GeV, gamma-ray emission from
inverse Compton scattering of CMB photons is expected to dominate the dark
matter annihilation signal from clusters, and our gamma-ray limits exclude
large regions of the parameter space that would give a good fit to the recent
anomalous Pamela and Fermi-LAT electron-positron measurements. We also present
constraints on the annihilation of more standard dark matter candidates, such
as the lightest neutralino of supersymmetric models. The constraints are
particularly strong when including the fact that clusters are known to contain
substructure at least on galaxy scales, increasing the expected gamma-ray flux
by a factor of ~5 over a smooth-halo assumption. We also explore the effect of
uncertainties in cluster dark matter density profiles, finding a systematic
uncertainty in the constraints of roughly a factor of two, but similar overall
conclusions. In this work, we focus on deriving limits on dark matter models; a
more general consideration of the Fermi-LAT data on clusters and clusters as
gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo,
minor revisions to be consistent with accepted versio
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Search for single top quarks in the tau+jets channel using 4.8 fb of collision data
We present the first direct search for single top quark production using tau
leptons. The search is based on 4.8 fb of integrated luminosity
collected in collisions at =1.96 TeV with the D0 detector
at the Fermilab Tevatron Collider. We select events with a final state
including an isolated tau lepton, missing transverse energy, two or three jets,
one or two of them tagged. We use a multivariate technique to discriminate
signal from background. The number of events observed in data in this final
state is consistent with the signal plus background expectation. We set in the
tau+jets channel an upper limit on the single top quark cross section of
\TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected
sensitivity for the observation of single top production when combining it with
electron+jets and muon+jets channels already published by the D0 collaboration
with 2.3 fb of data. We measure a combined cross section of
\SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure
- âŠ