16,664 research outputs found
Local sublattice-symmetry breaking in rotationally faulted multilayer graphene
Interlayer coupling in rotationally faulted graphene multilayers breaks the
local sublattice-symmetry of the individual layers. We present a theory of this
mechanism, which reduces to an effective Dirac model with space-dependent mass
in an important limit. It thus makes a wealth of existing knowledge available
for the study of rotationally faulted graphene multilayers. We demonstrate
quantitative agreement between our theory and a recent experiment.Comment: Valley dependence in Eqs. (2) and (7) corrected; coordinates x and y
interchanged in the appendi
The theory of the reentrant effect in susceptibility of cylindrical mesoscopic samples
A theory has been developed to explain the anomalous behavior of the magnetic
susceptibility of a normal metal-superconductor () structure in weak
magnetic fields at millikelvin temperatures. The effect was discovered
experimentally by A.C. Mota et al \cite{10}. In cylindrical superconducting
samples covered with a thin normal pure metal layer, the susceptibility
exhibited a reentrant effect: it started to increase unexpectedly when the
temperature lowered below 100 mK. The effect was observed in mesoscopic
structures when the and metals were in good electric contact. The
theory proposed is essentially based on the properties of the Andreev levels in
the normal metal. When the magnetic field (or temperature) changes, each of the
Andreev levels coincides from time to time with the chemical potential of the
metal. As a result, the state of the structure experiences strong
degeneracy, and the quasiparticle density of states exhibits resonance spikes.
This generates a large paramagnetic contribution to the susceptibility, which
adds up to the diamagnetic contribution thus leading to the reentrant effect.
The explanation proposed was obtained within the model of free electrons. The
theory provides a good description for experimental results [10]
Supermetallic conductivity in bromine-intercalated graphite
Exposure of highly oriented pyrolytic graphite to bromine vapor gives rise to
in-plane charge conductivities which increase monotonically with intercalation
time toward values (for ~6 at% Br) that are significantly higher than Cu at
temperatures down to 5 K. Magnetotransport, optical reflectivity and magnetic
susceptibility measurements confirm that the Br dopes the graphene sheets with
holes while simultaneously increasing the interplanar separation. The increase
of mobility (~ 5E4 cm^2/Vs at T=300 K) and resistance anisotropy together with
the reduced diamagnetic susceptibility of the intercalated samples suggests
that the observed supermetallic conductivity derives from a parallel
combination of weakly-coupled hole-doped graphene sheets.Comment: 5 pages, 4 figure
Quantum Spin Hall Effect in Graphene
We study the effects of spin orbit interactions on the low energy electronic
structure of a single plane of graphene. We find that in an experimentally
accessible low temperature regime the symmetry allowed spin orbit potential
converts graphene from an ideal two dimensional semimetallic state to a quantum
spin Hall insulator. This novel electronic state of matter is gapped in the
bulk and supports the quantized transport of spin and charge in gapless edge
states that propagate at the sample boundaries. The edge states are non chiral,
but they are insensitive to disorder because their directionality is correlated
with spin. The spin and charge conductances in these edge states are calculated
and the effects of temperature, chemical potential, Rashba coupling, disorder
and symmetry breaking fields are discussed.Comment: 4 pages, published versio
Infrared probe of the anomalous magnetotransport of highly oriented pyrolytic graphite in the extreme quantum limit
We present a systematic investigation of the magnetoreflectance of highly
oriented pyrolytic graphite in magnetic field B up to 18 T . From these
measurements, we report the determination of lifetimes tau associated with the
lowest Landau levels in the quantum limit. We find a linear field dependence
for inverse lifetime 1/tau(B) of the lowest Landau levels, which is consistent
with the hypothesis of a three-dimensional (3D) to 1D crossover in an
anisotropic 3D metal in the quantum limit. This enigmatic result uncovers the
origin of the anomalous linear in-plane magnetoresistance observed both in bulk
graphite and recently in mesoscopic graphite samples
Ultraviolet/X-ray variability and the extended X-ray emission of the radio-loud broad absorption line quasar PG 1004+130
We present the results of recent Chandra, XMM-Newton, and Hubble Space
Telescope observations of the radio-loud (RL), broad absorption line (BAL)
quasar PG 1004+130. We compare our new observations to archival X-ray and UV
data, creating the most comprehensive, high signal-to-noise, multi-epoch,
spectral monitoring campaign of a RL BAL quasar to date. We probe for
variability of the X-ray absorption, the UV BAL, and the X-ray jet, on
month-year timescales. The X-ray absorber has a low column density of
cm when it is assumed to be fully
covering the X-ray emitting region, and its properties do not vary
significantly between the 4 observations. This suggests the observed absorption
is not related to the typical "shielding gas" commonly invoked in BAL quasar
models, but is likely due to material further from the central black hole. In
contrast, the CIV BAL shows strong variability. The equivalent width (EW) in
2014 is EW=11.240.56 \AA, showing a fractional increase of =1.160.11 from the 2003 observation, 3183 days earlier
in the rest-frame. This places PG 1004+130 among the most highly variable BAL
quasars. By combining Chandra observations we create an exposure 2.5 times
deeper than studied previously, with which to investigate the nature of the
X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a
synchrotron origin, is detected in the radio jet ~8 arcsec (30 kpc) from the
central X-ray source with a spatial extent of ~4 arcsec (15 kpc). No similar
X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal
diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic
Microwave Background photons, is also detected.Comment: 15 pages, 7 figures, 3 tables. Accepted for publication in Ap
Charge distribution and screening in layered graphene systems
The charge distribution induced by external fields in finite stacks of
graphene planes, or in semiinfinite graphite is considered. The interlayer
electronic hybridization is described by a nearest neighbor hopping term, and
the charge induced by the self consistent electrostatic potential is calculated
within linear response (RPA). The screening properties are determined by
contributions from inter- and intraband electronic transitions. In neutral
systems, only interband transitions contribute to the charge polarizability,
leading to insulating-like screening properties, and to oscillations in the
induced charge, with a period equal to the interlayer spacing. In doped
systems, we find a screening length equivalent to 2-3 graphene layers,
superimposed to significant charge oscillations.Comment: 8 page
The Nature of Quantum Hall States near the Charge Neutral Dirac Point in Graphene
We investigate the quantum Hall (QH) states near the charge neutral Dirac
point of a high mobility graphene sample in high magnetic fields. We find that
the QH states at filling factors depend only on the perpendicular
component of the field with respect to the graphene plane, indicating them to
be not spin-related. A non-linear magnetic field dependence of the activation
energy gap at filling factor suggests a many-body origin. We therefore
propose that the and states arise from the lifting of the spin
and sub-lattice degeneracy of the LL, respectively.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Charge-ordered ferromagnetic phase in manganites
A mechanism for charge-ordered ferromagnetic phase in manganites is proposed.
The mechanism is based on the double exchange in the presence of diagonal
disorder. It is modeled by a combination of the Ising double-exchange and the
Falicov-Kimball model. Within the dynamical mean-field theory the charge and
spin correlation function are explicitely calculated. It is shown that the
system exhibits two successive phase transitions. The first one is the
ferromagnetic phase transition, and the second one is a charge ordering. As a
result a charge-ordered ferromagnetic phase is stabilized at low temperature.Comment: To appear in Phys. Rev.
- …